AT1 receptor autoantibodies

The presence of agonistic auto-antibodies against the angiotensin II AT1 receptor have been reported in the serum of individuals with PE (Xia et al., 2003). The antibody also downregulates the AT1 receptor in a similar manner to angiotensin II but stimulates superoxide production from placental or vascular tissue (Dechend et al., 2003). They also inhibit trophoblast invasion in an in vitro assay and increase trophoblast PAI-1 production (Xia et al., 2002, 2003) and thus may account for two features of pre-eclampsia (reduced invasion and increased PAI-1). In cross-sectional studies these auto-antibodies are claimed to be found in the majority of patients with severe pre-eclampsia. This, however, needs to be confirmed in prospective longitudinal studies. Whether these antibodies exist prior to development of pre-eclampsia or are found in individuals with mild disease remains to be determined.


The majority of pre-eclampsia occurs in nullipa-rous individuals and yet within this group 75% occurs at term in association with relatively low maternal and fetal morbidity. Less than 1% of the nulliparous population develop pre-eclampsia at <34 weeks. Such a low incidence of clinically significant disease may preclude the use of expensive screening tests in such a low-risk population.

The greatest expenditure associated with pre-eclampsia in the developed world is in the care of premature infants delivered of women with early onset or severe pre-eclampsia. Identification of individuals who may develop the early onset/severe pre-eclampsia phenotype is then the most desirable in terms of reducing neonatal and maternal morbidity and mortality and subsequent societal expense. Screening should perhaps focus primarily on multiparous individuals with a history of pre-eclampsia and women of any parity with underlying medical disease or multifetal pregnancy, as these women account for the majority of early onset severe pre-eclampsia resulting in preterm delivery. The inclusion of risk factors such as blood pressure at initial prenatal care visit, body mass index, family history and, possibly, smoking as well as short pre-conception exposure to paternal antigens, could expand the screen to include a greater number of otherwise low-risk nulliparas destined to develop early onset preeclampsia (Figure 15.2). A second round of screening or surveillance could then include the use of biochemical and biophysical markers, maternal and perhaps fetal genotype to identify such phenotypes and select the group of patients felt to be at highest risk for the development of preeclampsia. These biochemical/biophysical tests may also provide alternative and earlier definitions

Figure 15.2 Defining patients at risk of developing pre-eclampsia.

of disease than simply hypertension/proteinuria and suggest who may benefit from different therapeutic interventions (placental/vascular), as well as ongoing pregnancy surveillance. Current treatment is limited to the administration of steroids for fetal lung maturation and seizure prophylaxis for the mother, and resolution of disease is limited to delivery of the infant and its placenta. This does not dismiss the potential of future prophylactic treatments such as antiox-idants. Using such a two-step screening approach, a small percentage of nulliparas and multiparas destined to develop pre-eclampsia may be screen-negative (low risk by clinical and biochemical screen). The advantage of a two-step approach is to limit the number of individuals undergoing potentially costly screening and surveillance.

By far the majority of studies of pre-eclamptic women to date have been cross-sectional of women with mild disease at term. Although there are now more longitudinal studies emerging, they mostly still employ small patient numbers and a priori still focus on mild disease at term. What is needed are large-scale prospective studies powered to correlate predictive markers with clinically and economically significant outcomes for mother and fetus, i.e. they need to study early onset/ severe pre-eclampsia


Aldrich, C., Verp, M.S., Walker, M.A. and Ober, C. (2000). A null mutation in HLA-G is not associated with preeclampsia or intrauterine growth retardation. J. Reprod. Immunol., 47, 41-8. American College of Obstetricians and Gynecologists. (1996). Hypertension in Pregnancy. Washington: The College. Technical Bulletin No. 219. Anderson, G.D. and Sibai, B.M. (1986). In Obstetrics Normal and Problem Pregnancies, eds. S. Gabbe, J. Nieby and J. Simpson. New York: Churchill Livingstone, 845 pp.

Anim-Nyame, N., Hills, F. A., Sooranna, S. R., Steer, P. J. and Johnson, M. R. (2000). A longitudinal study of maternal plasma insulin-like growth factor binding protein-1 concentrations during normal pregnancy and pregnancies complicated by pre-eclampsia. Hum. Reprod., 15, 2215-19.

Aquilina, J., Barnett, A., Thompson, O. and Harrington, K. (1999). Second-trimester maternal serum inhibin A concentration as an early marker for preeclampsia. Am. J. Obstet. Gynecol., 181, 131-6.

Arborgast, B., Leeper, S. and Merrick, R. (1996). Plasma factors that determine endothelial cell lipid toxicity in vitro correctly identify women with preeclampsia in early and late gestation. Hypertens. Pregn., 15, 263-79.

Arngrimsson, R., Hayward, C., Nadaud, S., et al. (1997). Evidence for a familial pregnancy-induced hypertension locus in the eNOS-gene region. Am. J. Hum. Genet., 61, 354-62.

Bahado-Singh, R.O., Oz, U., Isozaki, T., et al. (1998). Midtrimester urine human chorionic gonadotropin beta-subunit core fragment levels and the subsequent development of pre-eclampsia. Am. J. Obstet. Gynecol., 179, 738-41.

Baker, P. N., Krasnow, J., Roberts, J. M. and Yeo, K. T. (1995). Elevated serum levels of vascular endothelial growth factor in patients with preeclampsia. Obstet. Gynecol., 86, 815-21.

Barden, A., Beilin, L.J., Ritchie, J., Croft, K.D., Walters, B.N. and Michael, C.A. (1996). Plasma and urinary 8-iso-prostane as an indicator of lipid peroxidation in pre-eclampsia and normal pregnancy. Clin. Sci. (Lond.), 91, 711-18.

Belgore, F.M., Blann, A.D., Li-Saw-Hee, F.L., Beevers, D.G. and Lip, G.Y. (2001). Plasma levels of vascular endothelial growth factor and its soluble receptor (SFlt-1) in essential hypertension. Am. J. Cardiol., 87, 805-7, A9.

Bower, S., Bewley, S. and Campbell, S. (1993). Improved prediction of preeclampsia by two-stage screening of uterine arteries using the early diastolic notch and color Doppler imaging. Obstet. Gynecol., 82, 78-83.

Brockelsby, J., Hayman, R., Ahmed, A., Warren, A., Johnson, I. and Baker, P. (1999). VEGF via VEGF receptor-1 (Flt-1) mimics preeclamptic plasma in inhibiting uterine blood vessel relaxation in pregnancy: implications in the pathogenesis of preeclampsia. Lab. Invest., 79, 1101-11.

Caritis, S., Sibai, B., Hauth, J., et al. (1998). Low-dose aspirin to prevent preeclampsia in women at high risk. National Institute of Child Health and Human Development Network of Maternal-Fetal Medicine Units. N. Engl. J. Med., 338, 701-5.

Caron, C., Goudemand, J., Marey, A., Beague, D., Ducroux, G. and Drouvin, F. (1991). Are haemostatic and fibrinolytic parameters predictors of pre-eclampsia in pregnancy-associated hypertension? Thromb. Haemost, 66, 410-14.

Chappell, L. C., Seed, P. T., Kelly, F. J., etal. (2002). Vitamin C and E supplementation in women at risk of preeclampsia is associated with changes in indices of oxidative stress and placental function. Am. J. Obstet. Gynecol., 187, 777-84.

Chavarria, M. E., Lara-Gonzalez, L., Gonzalez-Gleason, A., Sojo, I. and Reyes, A. (2002). Maternal plasma cellular fibronectin concentrations in normal and pre-eclamptic pregnancies: a longitudinal study for early prediction of preeclampsia. Am. J. Obstet. Gynecol., 187, 595-601.

Chesley, L.C., Annitto, J.E. and Cosgrove, R.A. (1968). The familial factor in toxemia of pregnancy. Obstet. Gynecol., 32, 303-11.

Chien, P. F., Arnott, N., Gordon, A., Owen, P. and Khan, K. S. (2000). How useful is uterine artery Doppler flow velocimetry in the prediction of pre-eclampsia, intrauterine growth retardation and perinatal death? An overview. Br. J. Obstet. Gynaecol., 107, 196-208.

Cincotta, R. B. and Brennecke, S. P. (1998). Family history of pre-eclampsia as a predictor for pre-eclampsia in primigravidas. Int. J. Gynaecol. Obstet., 60, 23-7.

Cotter, A. M., Molloy, A. M., Scott, J. M. and Daly, S. F. (2001). Elevated plasma homocysteine in early pregnancy: a risk factor for the development of severe pre-eclampsia. Am. J. Obstet. Gynecol., 185, 781-5.

Dechend, R., Viedt, C., Muller, D. N., et al. (2003). AT1 receptor agonistic antibodies from preeclamptic patients stimulate NADPH oxidase. Circulation, 107, 1632-9.

Dekker, G.A., de Vries, J.I., Doelitzsch, P.M., etal. (1995). Underlying disorders associated with severe early-onset preeclampsia. Am. J. Obstet. Gynecol., 173, 1042-8.

Eskenazi, B., Fenster, L. and Sidney, S. (1991). A multi-variate analysis of risk factors for preeclampsia. J. Am. Med. Ass., 266, 237-41.

Estelles, A., Gilabert, J., Espana, F., Aznar, J. and Galbis, M. (1991). Fibrinolytic parameters in normotensive pregnancy with intrauterine fetal growth retardation and in severe preeclampsia. Am. J. Obstet. Gynecol., 165, 138-42.

Fitzgerald, D. J., Entman, S. S., Mulloy, K. and FitzGerald, G.A. (1987a). Decreased prostacyclin biosynthesis preceding the clinical manifestation of pregnancy-induced hypertension. Circulation, 75, 956-63.

Fitzgerald, D.J., Mayo, G., Catella, F., Entman, S.S. and FitzGerald, G.A. (1987b). Increased thromboxane biosynthesis in normal pregnancy is mainly derived from platelets. Am. J. Obstet. Gynecol, 157, 325-30.

Fleischer, A., Schulman, H., Farmakides, G., et al. (1986). Uterine artery Doppler velocimetry in pregnant women with hypertension. Am. J. Obstet. Gynecol., 154, 806-13.

Gratton, R. J., Asano, H. and Han, V. K. (2002). The regional expression of insulin-like growth factor II (IGF-II) and insulin-like growth factor binding protein-1 (IGFBP-1) in the placentae of women with pre-eclampsia. Placenta, 23, 303-10.

Grobman, W. A. and Wang, E. Y. (2000). Serum levels of activin A and inhibin A and the subsequent development of preeclampsia. Obstet. Gynecol., 96, 390-4.

Grobman, W.A. and Kazer, R. R. (2001). Serum insulin, insulin-like growth factor-I, and insulin-like growth factor binding protein-1 in women who develop preeclampsia. Obstet. Gynecol., 97, 521-6.

Haig, D. (1993). Genetic conflicts in human pregnancy. Q. Rev. Biol., 68, 495-532.

Harrison, G. A., Humphrey, K. E., Jones, N., et al. (1997). A genomewide linkage study of preeclampsia/eclamp-sia reveals evidence for a candidate region on 4q. Am. J. Hum. Genet, 60, 1158 -67.

Hietala, R., Turpeinen, U. and Laatikainen, T. (2001). Serum homocysteine at 16 weeks and subsequent preeclampsia. Obstet. Gynecol., 97, 527-9.

Hornig, C., Barleon, B., Ahmad, S., Vuorela, P., Ahmed, A. and Weich, H. A. (2000). Release and complex formation of soluble VEGFR-1 from endothelial cells and biological fluids. Lab. Invest., 80, 443-54.

Hsu, C. D., Chan, D. W., Iriye, B., Johnson, T. R., Hong, S. F. and Repke, J. T. (1994). Elevated serum human chorionic gonadotropin as evidence of secretory response in severe preeclampsia. Am. J. Obstet. Gynecol., 170, 1135-8.

Hutt, R., Ogunniyi, S. O., Sullivan, M. H. and Elder, M. G. (1994). Increased platelet volume and aggregation precede the onset of preeclampsia. Obstet. Gynecol., 83, 146-9.

Izumi, A., Minakami, H., Kuwata, T. and Sato, I. (1997). Calcium-to-creatinine ratio in spot urine samples in early pregnancy and its relation to the development of preeclampsia. Metabolism, 46, 1107-8.

Key, T. J., Pike, M. C., Moore, J. W., Wang, D. Y. and Morgan, B. (1990). The relationship of free fatty acids with the binding of oestradiol to SHBG and to albumin in women. J. Steroid Biochem., 35, 35-8.

Koga, K., Osuga, Y., Yoshino, O., et al. (2003). Elevated serum soluble vascular endothelial growth factor receptor 1 (sVEGFR-1) levels in women with preeclampsia. J. Clin. Endocrinol. Metab., 88, 2348-51.

Konijnenberg, A., Stokkers, E.W., van der Post, J. A., et al. (1997). Extensive platelet activation in preeclampsia compared with normal pregnancy: enhanced expression of cell adhesion molecules. Am. J. Obstet. Gynecol., 176, 461-9.

Laasanen, J., Heinonen, S., Hiltunen, M., Mannermaa, A. and Laakso, M. (2002). Polymorphism in the peroxi-some proliferator-activated receptor-gamma gene in women with preeclampsia. Early Hum. Dev., 69, 77-82.

Le Bouteiller, P., Pizzato, N., Barakonyi, A. and Solier, C. (2003). HLA-G, pre-eclampsia, immunity and vascular events. J. Reprod. Immunol., 59, 219-34.

Lim, K. H., Friedman, S. A., Ecker, J. L., Kao, L. and Kilpatrick, S.J. (1998). The clinical utility of serum uric acid measurements in hypertensive diseases of pregnancy. Am. J. Obstet. Gynecol., 178, 1067 -71.

Lindoff, C., Ingemarsson, I., Martinsson, G., Segelmark, M., Thysell, H. and Astedt, B. (1997). Preeclampsia is associated with a reduced response to activated protein C. Am. J. Obstet. Gynecol., 176, 457 -60.

Livingston, J. C., Barton, J. R., Park, V., Haddad, B., Phillips, O. and Sibai, B.M. (2001). Maternal and fetal inherited thrombophilias are not related to the development of severe preeclampsia. Am. J. Obstet. Gynecol., 185, 153-7.

Lyall, F. (2002). The human placental bed revisited. Placenta, 23, 555 -62.

Lyall, F., Greer, I. A., Boswell, F. and Fleming, R. (1997). Suppression of serum vascular endothelial growth factor immunoreactivity in normal pregnancy and in pre-eclampsia. Br. J. Obstet. Gynaecol., 104, 223-8.

Makkonen, N., Heinonen, S., Hiltunen, M., Helisalmi, S., Mannermaa, A. and Kirkinen, P. (2001). Apolipoprotein E alleles in women with pre-eclampsia. J. Clin. Pathol., 54, 652-4.

Martinez-Abundis, E., Gonzalez-Ortiz, M. and Pascoe-Gonzalez, S. (2000). Serum leptin levels and the severity of preeclampsia. Arch. Gynecol. Obstet., 264, 71-3.

Masuzaki, H., Ogawa, Y., Sagawa, N., et al. (1997). Nonadipose tissue production of leptin: leptin as a novel placenta-derived hormone in humans. Nat. Med., 3, 1029-33.

Maynard, S.E., Min, J.Y., Merchan, J., etal. (2003). Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J. Clin. Invest., 111, 649-58.

McKay, D.G. (1981). Chronic intravascular coagulation in normal pregnancy and preeclampsia. Contrib. Nephrol., 25, 108-19.

Millar, J. G., Campbell, S. K., Albano, J. D., Higgins, B. R. and Clark, A.D. (1996). Early prediction of pre-eclampsia by measurement of kallikrein and creatinine on a random urine sample. Br. J. Obstet. Gynaecol., 103, 421-6.

Missfelder-Lobos, H., Teran, E., Lees, C., Albaiges, G. and Nicolaides, K. H. (2002). Platelet changes and subsequent development of pre-eclampsia and fetal growth restriction in women with abnormal uterine artery Doppler screening. Ultrasound Obstet. Gynecol., 19, 443-8.

Moses, E. K., Lade, J. A., Guo, G., et al. (2000). A genome scan in families from Australia and New Zealand confirms the presence of a maternal susceptibility locus for pre-eclampsia, on chromosome 2. Am. J. Hum. Genet., 67, 1581-5.

Muttukrishna, S., Knight, P. G., Groome, N. P., Redman, C. W. and Ledger, W.L. (1997). Activin A and inhibin A as possible endocrine markers for pre-eclampsia. Lancet, 349, 1285-8.

Muttukrishna, S., North, R. A., Morris, J., et al. (2000). Serum inhibin A and activin A are elevated prior to the onset of pre-eclampsia. Hum. Reprod., 15, 1640-5.

Myatt, L., Brewer, A. and Prada, J. (1992). In 39th Annual Meeting, Society for Gynecologic Investigation, San Antonio, Texas.

Myatt, L. and Miodovnik, M. (1999). Prediction of preeclampsia. Semin. Perinatol., 23, 45-57.

Myatt, L. for the NICHD MFMU Network. (2001). Do women at high risk develop preeclampsia earlier in gestation than those at low risk? Am. J. Obstet. Gynecol., 184, S81.

Myatt, L. for the NICHD MFMU Network. (2002). Differences in the time of diagnosis of mild vs severe preeclampsia between low and high risk patient groups. Hypertens. Pregn., 21 (Suppl. 1), 63.

Naicker, T., Khedun, S. M., Moodley, J. and Pijnenborg, R. (2003). Quantitative analysis of trophoblast invasion in preeclampsia. Acta Obstet. Gynecol. Scand., 82, 722-9.

Nebert, D.W. (2000). Extreme discordant phenotype methodology: an intuitive approach to clinical pharmacogenetics. Eur. J. Pharmacol., 410, 107-20.

Nevils, B. and Conrad, K. (1995). Increased circulating levels of TNFa in preeclampsia: a possible role for cytokines in the pathogenesis of the disease. J. Soc. Gyn. Invest., 2, 311.

O'Brien, M., Dausset, J., Carosella, E. D. and Moreau, P. (2000). Analysis of the role of HLA-G in preeclampsia. Hum. Immunol., 61, 1126-31.

O'Brien, T.E., Ray, J.G. and Chan, W. S. (2003). Maternal body mass index and the risk of preeclampsia: a systematic overview. Epidemiology, 14, 368-74.

Ohkuchi, A., Minakami, H., Aoya, T., et al. (2001). Expansion of the fraction of Th1 cells in women with preeclampsia: inverse correlation between the percentage of Th1 cells and the plasma level of PAI-2. Am. J. Reprod. Immunol., 46, 252-9.

Pang, Z. J. and Xing, F. Q. (2003). Comparative study on the expression of cytokine-receptor genes in normal and preeclamptic human placentas using DNA microarrays. J. Perinat. Med., 31, 153-62.

Pearson, H. (2002). Reproductive immunology: immunity's pregnant pause. Nature, 420, 265-6.

Perkins, A. V., Linton, E. A., Eben, F., Simpson, J., Wolfe, C.D. and Redman, C.W. (1995). Corticotro-phin-releasing hormone and corticotrophin-releasing hormone binding protein in normal and pre-eclamptic human pregnancies. Br. J. Obstet. Gynaecol., 102, 118-22.

Petraglia, F., De Vita, D., Gallinelli, A., et al. (1995). Abnormal concentration of maternal serum activin-A in gestational diseases. J. Clin. Endocrinol. Metab., 80, 558-61.

Phupong, V., Dejthevaporn, T., Tanawattanacharoen, S., Manotaya, S., Tannirandorn, Y. and Charoenvidhya, D. (2003). Predicting the risk of preeclampsia and small for gestational age infants by uterine artery Doppler in low-risk women. Arch. Gynecol. Obstet., 268, 158-61.

Pijnenborg, R., Bland, J. M., Robertson, W. B. and Brosens, I. (1983). Uteroplacental arterial changes related to interstitial trophoblast migration in early human pregnancy. Placenta, 4, 397-413.

Pouta, A. M., Hartikainen, A. L., Vuolteenaho, O. J., Ruokonen, A.O. and Laatikainen, T.J. (1998). Mid-trimester N-terminal proatrial natriuretic peptide, free beta hCG, and alpha-fetoprotein in predicting preeclampsia. Obstet. Gynecol., 91, 940-4.

Ranheim, T., Staff, A.C. and Henriksen, T. (2001). VEGF mRNA is unaltered in decidual and placental tissues in preeclampsia at delivery. Acta Obstet. Gynecol. Scand., 80, 93-8.

Regan, C.L., Levine, R.J., Baird, D.D., et al. (2001). No evidence for lipid peroxidation in severe preeclampsia. Am. J. Obstet. Gynecol., 185, 572-8.

Reimer, T., Koczan, D., Gerber, B., Richter, D., Thiesen, H. J. and Friese, K. (2002). Microarray analysis of differentially expressed genes in placental tissue of pre-eclampsia: up-regulation of obesity-related genes. Mol. Hum. Reprod., 8, 674-80.

Roberts, J. M., Taylor, R. N., Musci, T. J., Rodgers, G. M., Hubel, C.A. and McLaughlin, M.K. (1989). Pre-eclampsia: an endothelial cell disorder. Am. J. Obstet. Gynecol., 161, 1200-4.

Saito, S., Sakai, M., Sasaki, Y., Tanebe, K., Tsuda, H. and Michimata, T. (1999). Quantitative analysis of peripheral blood Th0, Th1, Th2 and the Th1:Th2 cell ratio during normal human pregnancy and preeclampsia. Clin. Exp. Immunol., 117, 550-5.

Sakai, M., Tsuda, H., Tanebe, K., Sasaki, Y. and Saito, S. (2002). Interleukin-12 secretion by peripheral blood mononuclear cells is decreased in normal pregnant subjects and increased in preeclamptic patients. Am. J. Reprod. Immunol., 47, 91-7.

Saleh, A.A., Bottoms, S.F., Farag, A.M., et al. (1992). Markers for endothelial injury, clotting and platelet activation in preeclampsia. Arch. Gynecol. Obstet., 251, 105-10.

Sattar, N., Ramsay, J., Crawford, L., Cheyne, H. and Greer, I. A. (2003). Classic and novel risk factor parameters in women with a history of preeclampsia. Hypertension, 42, 39-42.

Savvidou, M. D., Hingorani, A. D., Tsikas, D., Frolich, J. C., Vallance, P. and Nicolaides, K. H. (2003). Endothelial dysfunction and raised plasma concentrations of asymmetric dimethylarginine in pregnant women who subsequently develop pre-eclampsia. Lancet, 361, 1511-17.

Serin, I. S., Ozcelik, B., Basbug, M., et al. (2002). Predictive value of tumor necrosis factor alpha (TNF-alpha) in preeclampsia. Eur. J. Obstet. Gynecol. Reprod. Biol., 100, 143-5.

Sibai, B.M., el-Nazer, A. and Gonzalez-Ruiz, A. (1986). Severe preeclampsia-eclampsia in young primigravid women: subsequent pregnancy outcome and remote prognosis. Am. J. Obstet. Gynecol., 155, 1011-16.

Sibai, B.M., Caritis, S.N., Thom, E., etal. (1993). Prevention of preeclampsia with low-dose aspirin in healthy, nulliparous pregnant women. The National Institute of Child Health and Human Development Network of Maternal-Fetal Medicine Units. N. Engl. J. Med, 329, 1213-18.

Sibai, B.M., Gordon, T., Thom, E., et al. (1995). Risk factors for preeclampsia in healthy nulliparous women: a prospective multicenter study. The National Institute of Child Health and Human Development Network of Maternal-Fetal Medicine Units. Am. J. Obstet. Gynecol., 172, 642-8.

Sibai, B.M., Ewell, M., Levine, R.J., et al. (1997). Risk factors associated with preeclampsia in healthy nulliparous women. The Calcium for Preeclampsia Prevention (CPEP) Study Group. Am. J. Obstet. Gynecol., 177, 1003-10.

Smith, G. C., Stenhouse, E. J., Crossley, J. A., Aitken, D. A., Cameron, A. D. and Connor, J. M. (2002). Early pregnancy levels of pregnancy-associated plasma protein a and the risk of intrauterine growth restriction, premature birth, preeclampsia, and stillbirth. J. Clin. Endocrinol. Metab, 87, 1762-7.

Solomon, C. G., Graves, S. W., Greene, M. F. and Seely, E.W. (1994). Glucose intolerance as a predictor of hypertension in pregnancy Hypertension, 23, 717-21.

Sowers, J.R., Saleh, A.A. and Sokol, R.J. (1995). Hyper-insulinemia and insulin resistance are associated with preeclampsia in African-Americans. Am. J. Hypertens., 8, 1-4.

Sugimoto, H., Hamano, Y., Charytan, D., et al. (2003). Neutralization of circulating vascular endothelial growth factor (VEGF) by anti-VEGF antibodies and soluble VEGF receptor 1 (sFlt-1) induces proteinuria. J. Biol. Chem., 278, 12,605-8.

Suhonen, L. and Teramo, K. (1993). Hypertension and pre-eclampsia in women with gestational glucose intolerance. Acta Obstet. Gynecol. Scand., 72, 269 -72.

Tjoa, M. L., van Vugt, J. M., Go, A. T., Blankenstein, M. A., Oudejans, C. B. and van Wijk, I. J. (2003). Elevated C-reactive protein levels during first trimester of pregnancy are indicative of preeclampsia and intrauterine growth restriction. J. Reprod. Immunol., 59, 29-37.

Torry, D. S., Wang, H. S., Wang, T. H., Caudle, M. R. and Torry, R.J. (1998). Preeclampsia is associated with reduced serum levels of placenta growth factor. Am. J. Obstet. Gynecol, 179, 1539-44.

Vaillant, P., David, E., Constant, I., etal. (1996). Validity in nulliparas of increased beta-human chorionic gonado-trophin at mid-term for predicting pregnancy-induced hypertension complicated with proteinuria and intra-uterine growth retardation. Nephron, 72, 557 -63.

Vince, G. S., Starkey, P. M., Austgulen, R., Kwiatkowski, D. and Redman, C. W. (1995). Interleukin-6, tumour necrosis factor and soluble tumour necrosis factor receptors in women with pre-eclampsia. Br. J. Obstet. Gynaecol., 102, 20-5.

Wilson, M. L., Goodwin, T. M., Pan, V. L. and Ingles, S. A. (2003). Molecular epidemiology of preeclampsia. Obstet. Gynecol. Surv, 58, 39-66.

Wolf, M., Sandler, L., Munoz, K., Hsu, K., Ecker, J. L. and Thadhani, R. (2002). First trimester insulin resistance and subsequent preeclampsia: a prospective study. J. Clin. Endocrinol. Metab., 87, 1563-8.

Xia, Y., Wen, H. Y. and Kellems, R. E. (2002). Angiotensin II inhibits human trophoblast invasion through AT1 receptor activation. J. Biol. Chem., 277, 24,601-8.

Xia, Y., Wen, H., Bobst, S., Day, M. C. and Kellems, R. E. (2003). Maternal autoantibodies from preeclamptic patients activate angiotensin receptors on human trophoblast cells. J. Soc. Gynecol. Investig., 10, 82-93.

Yamada, N., Arinami, T., Yamakawa-Kobayashi, K., et al. (2000). The 4G/5G polymorphism of the plasminogen activator inhibitor-1 gene is associated with severe preeclampsia. J. Hum. Genet., 45, 138-41.

Yoshimura, T., Chowdhury, F. A., Yoshimura, M. and Okamura, H. (2003). Genetic and environmental contributions to severe preeclampsia: lack of association with the endothelial nitric oxide synthase Glu298Asp variant in a developing country. Gynecol. Obstet. Invest., 56, 10-13.

Zhou, Y., McMaster, M., Woo, K., et al. (2002). Vascular endothelial growth factor ligands and receptors that regulate human cytotrophoblast survival are dysregu-lated in severe preeclampsia and hemolysis, elevated liver enzymes, and low platelets syndrome. Am. J. Pathol., 160, 1405-23.

My Life My Diet

My Life My Diet

I lost over 60 pounds and 4+ inches off my waist without pills, strenuous exercise, or any of the things that the diet experts tell you to do...and I did it in less than 4 months! If you have the desire, and can read through my e-book , then this is for you! I could have easily made it a lot more difficult, with stacks of information that people will never read, but why?

Get My Free Ebook

Post a comment