Info

searchers of the first half and the middle of the past century, the definition of intramural infiltration as the basis for tumor changes demonstrated the closest connection between separate forms of infiltra-tive cancer. Their estimation of the morphological substrate of the tumor was thus outside the framework ofvarious classifications or schemes (D Fig. 29) [122, 123].

Some authors now use the terms »ulcerous can-cer«, »cancer ulcer«, and others to characterize a

▲ Fig. 29 a.

definite stage of the tumor. But early in the past century, authors indicated only the tendency of in-filtrative cancer to ulceration, which emphasized the importance of its endophytic growth. Data on the so-called cycles of malignant ulcer »healing« (when the ulcer epithelializes and then appears again) can be used only as confirmation of the classical works. The following question is justified in such a situation: If a malignant tumor »heals«, does it mean that the disease is cured? Nothing of the kind. Therefore, those authors who define an exo-phytic tumor resting on a large base with ulceration as the infiltrative form of gastric cancer are more correct than modern authors who define such new growth as the ulcerous form with submucous spread.

While characterizing X-ray examination of the stomach with reference to practical health care problems, we would like to emphasize some methodological aspects in order to better explain the role of radiological diagnosis in gastro-oncology. What is understood today to be traditional radiology differs considerably from what was practiced in the first half of the past century. The double-contrast method developed by Japanese physicians in the mid 1950s made it possible not only to visualize the mucous membrane impregnated with a barium suspension, but also to estimate the elasticity of the stomach wall by inflating it with air. The extent of affection could

D Fig. 29a-e. Female patient U., age 63. Diagnosis: gastric cancer. a Stomach roentgenogram (tight filling, vertical position, anterior projection): the lesser curvature of the distal part of the stomach is depressed and straightens the angular notch (white arrow); the prepyloric part is irregularly narrowed over its entire length; planar ulcer niche on the greater curvature (black arrow). b Target stomach roentgenogram (tight filling, vertical position, anterior projection), dosed compression: the lesser curvature is depressed, the angular notch straightened; the greater curvature contour is uneven and eroded owing to the ridge of infiltration encircling a flat niche (arrows). c Stomach roentgenogram (double contrast, horizontal position, anterior projection): rigid walls

of distal part due to circular infiltration spreading over the entire body of the stomach (arrows). Conclusion: Infiltrative-ulcerous cancer of the distal part of the stomach with spread to the stomach body. d Macrospecimen of a resected stomach: firm wall; ulcers on the inner surface, occasional sites coated with fibrin (black arrows); intramural infiltration (white arrows). e Fragments of a macrospecimen (strips): white tumor tissue infiltrating the stomach wall (arrows) with ulceration

□ Fig. 30a-h. Female patient S., age 67. Diagnosis: gastric cancer. a Stomach roentgenogram (vertical position, anterior projection): air bubble redistribution in the stomach, which is elongated; the walls are thick (arrows). b, c Series of pictures of the upper part of the stomach and the lower third of the esophagus (tight filling, vertical position, anterior projection) at the moment of contrast medium passage through the gas-

thus be evaluated with sufficient accuracy. Combined with the classical method, double-contrast radiology significantly broadened the diagnostic potentials of roentgenogastroenterology [31, 58, 185]. This combined examination with tight filling, dosed compression, double contrast, and other technical features, turned into a study that differs substantially from the relatively simple procedure that was practiced 50 years ago.

Like the numerous currently used diagnostic methods on the whole, the traditional multi-component X-ray study of the stomach should be used reasonably and effectively with proper consideration of all its component parts. Standardization is one of them. This is an approach which joins the economic and diagnostic aspects of radiology and which allows another specialist to comment, whenever necessary, on the results of the examination.

At the present time, traditional radiology has several standard methods for examining the stomach which do not differ in principle except in minor and unimportant details. These methods are based on several important requirements, the fulfillment of which allows the most effective use of the traditional radiology, which is now a component of radiological diagnosis.

First, X-rays pictures should be taken in various projections, because if new growths are small and the morphological signs of their early forms are insignificant, organic changes may be masked by various elements of the stomach X-ray picture. The radiologist has to take pictures in optimal projections in order to correctly evaluate the stomach condition.

Second, the radiologist must be aided by X-ray TV, which is indispensable today for obtaining high-quality pictures of the pathology. The prerequisite for an adequate X-ray examination of the stomach is an X-ray unit that enables computerized analysis of the X-ray picture.

Another important requisite is obligatory recording of the obtained image, because the double-contrast technique can give reliable results only on condition that a sufficient number of X-ray pictures of various parts of the organ are taken. This requirement also holds for tight filling - one of the main elements of the traditional X-ray examination of the stomach (D Fig. 30).

□ Fig. 30a-h. Female patient S., age 67. Diagnosis: gastric cancer. a Stomach roentgenogram (vertical position, anterior projection): air bubble redistribution in the stomach, which is elongated; the walls are thick (arrows). b, c Series of pictures of the upper part of the stomach and the lower third of the esophagus (tight filling, vertical position, anterior projection) at the moment of contrast medium passage through the gas-

troesophageal junction: the abdominal segment of the esophagus is disfigured, its walls are rigid, the relief of the inner surface is changed (black arrow), the stomach-diaphragm distance is increased (white arrows). d Stomach roentgenogram (tight filling, vertical position, anterior projection): the cavity volume is decreased, the angular notch is straightened, the lesser curvature is short and depressed. e Stomach roentgenogram (double contrast, horizontal position, anterior projection): the stomach is disfigured into a rigid tube over almost its entire length except for the pyloric part and the pylorus proper due to circular intramural infiltration. Depot on the posterior wall of the middle third of the esophagus. The disfigured upper part of the stomach is tightly filled. Contrast medium regurgitated to the esophagus due to dysfunction of the gastroesophageal junction as a result of

▲ Fig. 30 f.

infiltration expansion onto the abdominal segment of the esophagus. f Stomach roentgenogram (double contrast, horizontal position, left oblique projection): thick walls of the upper part due to expansion of intramural infiltration (arrows). Conclusion: Infiltrative cancer of the stomach with involvement of the esophagus. g Macrospecimen of a resected stomach: firm wall over its entire length due to tumor infiltration expanding to the esophagus. h Fragment of a macrospecimen (strip): the wall is thick; white tumor tissue infiltrating the stomach wall is seen (arrows). Histologically, a signet-ring cell carcinoma

▲ Fig. 30 h.

Fulfillment of said requirements increases the cost of the X-ray examination and the patient's dose. Therefore, it is necessary to reasonably limit the number of pictures taken in various projections. Digital X-ray imaging is also used now on an ever-increasing scale. It is more informative owing to computerized processing of the obtained image of the stomach.

In order to optimize the X-ray examination we have standardized the procedure. We take a limited number of pictures in certain projections in a defined sequence, the proj ections being so selected that all parts of the stomach are imaged. Strict adherence to the methodology of stomach examination gives a full review of the stomach and accounts for its quality. However, standardization does not imply obligatory filming with the patient in strictly fixed positions, because an individual approach to each particular patient is necessary depending on his or her constitutional features, different shapes of the stomach (the form of a horn or a hook), the position of the duodenum, etc. The optimal position of the patient can be chosen only under visual control.

The X-ray imaging is a point of special importance. Fluoroscopy should be used as the primary method. In addition to selection of the optimal projection, X-ray fluoroscopy guidance must ensure flexibility of the investigation program. Thus, if, during the examination, the radiologist discovers changes requiring verification, he or she may alter the course of the examination by taking additional pic tures in non-standard projections with detailed imaging of the affected site. The importance of correct primary estimation of the character of the pathology based on the results of X-ray fluoroscopy will be given special emphasis. But in revealing gastric cancer, especially its minor forms, this stage is important only for the tentative location of the lesion (e.g., the pyloric, cardiac part, etc.). A detailed study is done by analyzing stored images or X-ray films (O Fig. 31).

□ Fig. 31a-f. Female patient K., age 60. Diagnosis: gastric cancer. a Stomach roentgenogram (tight filling, vertical position, right semi-oblique projection) at the moment of peristaltic wave passage over the involved zone: no organic changes, stomach contours are even. b Stomach roentgenogram (tight filling, vertical position, anterior projection): uneven and eroded notch contour (arrows). c Stomach roentgenogram (pneumo-relief, horizontal position, right oblique projection): marked convergence of the

▲ Fig. 31 e. ▼ Fig. 31 f.

folds toward the angular notch (arrow). d Stomach roentgenogram (double contrast, horizontal position, right semi-oblique projection): thick wall in the notch projection (arrows); peristalsis can be seen over the entire length. e Stomach roentgenogram (double contrast, horizontal position, right oblique projection): thick wall appears more distinct with the optimal projection due to intramural infiltration (arrow). Conclusion: Early infiltrative cancer of the angular notch. f Endophotograph: gray-yellow portion of mucosa, to 1 cm in diameter, with indistinct borders and irregular surface on the lesser curvature of the lower third of the stomach. Histologically, a signet-ring cell carcinoma folds toward the angular notch (arrow). d Stomach roentgenogram (double contrast, horizontal position, right semi-oblique projection): thick wall in the notch projection (arrows); peristalsis can be seen over the entire length. e Stomach roentgenogram (double contrast, horizontal position, right oblique projection): thick wall appears more distinct with the optimal projection due to intramural infiltration (arrow). Conclusion: Early infiltrative cancer of the angular notch. f Endophotograph: gray-yellow portion of mucosa, to 1 cm in diameter, with indistinct borders and irregular surface on the lesser curvature of the lower third of the stomach. Histologically, a signet-ring cell carcinoma

The standardization problems have been under discussion for several decades in Japan, the mother country of gastrofluorographic examinations. The protocol for a standard X-ray examination of the stomach suggests taking six to eight pictures. According to our own experience and that of our colleagues, pictures taken in five standard projections are quite sufficient for the diagnostic procedure [28, 31, 54, 58].

We suggest that the study begin with a short surveillance of the abdominal cavity as a whole. As the first portions of the barium meal are ingested (at the phase of tight filling, pneumo-relief, and wall collapse), the condition of the esophagus is evaluated in the anterior and right oblique projections. At the tight-filling phase, the configuration and contours of the esophagus are estimated, and an attempt is made to detect possible protrusion, narrowing, curvature, disfigured contours, or obturation. As the esophagus empties itself of the barium suspension, the character of wall collapse and the mucosal condition are estimated based on the relief and the pattern of the folds. Analysis of the esophagus picture at various degrees of filling gives information on the functional parameters of the esophagus and the condition of its sphincter zones: wall elasticity, sphincter competence, rate ofbarium meal passage through the esophagus, and the contractile function of the esophagus.

The stomach is then examined in the vertical position. As its cavity is filled with barium suspension, the shape, size, position, and contours of the stomach are estimated. Two projections should be preferred to visualize the stomach contours: anterior projection with a 10°-15° tilt and left lateral projection.

Two pictures are taken in the vertical position:

1. Anterior or right oblique, half-oblique, quarter-oblique, depending on the particular topography of the patient's stomach (for estimation at tight filling of the body, sinus, antral and pyloric parts, and also duodenal bulb). This projection helps to visualize the contours of the lesser and greater curvatures of the afore-mentioned stomach parts with tight filling and also the state of the air bubble.

2. Left lateral projection for estimation at tight filling of the anterior and posterior walls of the stomach body, and also the anterior and poste-

rior walls of its upper part against the background of a natural amount of air.

Then the patient ingests a gas-producing mixture or granules, and drinks a barium suspension in small portions. The patient keeps the last gulp in his mouth and assumes the horizontal position for the posterior left-oblique projection. As the last portion of the barium meal is swallowed, the condition of the esophagus is estimated in the left-oblique projection; the function of the gastroesophageal junction is also evaluated. Next the patient is asked to turn slowly about his or her long axis in a counterclockwise direction for better permeation of the entire gastric mucosa and to reduce the volume of foam that has formed.

Then pictures are taken in the horizontal position of the patient in the following projections:

1. Left posterior oblique projection to visualize the distal third of the esophagus, the gastroesophageal junction, the upper part of the stomach (double contrast), the distal third of the stomach, and the duodenal bulb (tight filling).

2. Anterior projection (double contrast) to study the stomach body wall and the contour of the upper part with tight filling.

3. Right anterior oblique projection - double contrast of the distal half of the stomach, duodenal bulb, and visualization of the fundus contour at tight filling.

Examination according to this program visualizes every part of the stomach tightly filled with barium suspension using the double-contrast technique. As has been noted, an effective examination depends on high quality of the barium meal and the gas-producing mixture. Owing to the simplicity of the standardized method using digital technology, it is possible to increase the number of examinations by several orders of magnitude, whereas its low cost can considerably increase the profitability of the service. In our opinion, its high efficiency in detecting affections of various localizations meets current requirements for the traditional X-ray examination of the stomach (D Fig. 32).

▲ Fig. 32 a.

Was this article helpful?

0 0

Post a comment