1. To ensure reproducibility of DAF patterns, the same thermocycler and reagents should be used. The interpretation of weak bands can be problematic, and typing should be duplicated in separate runs to help overcome this problem (see Subheading 1.).

2. A minority of Campylobacter isolates may be nontypable by DAF or PFGE owing to the production of DNAses. This can be overcome by routinely treating bacterial suspensions with formaldehyde before proceeding with the typing method (see Subheading 2.1.).

3. Caution: Formaldehyde is toxic and harmful if inhaled or absorbed through skin or mucosa. This reagent should only be handled in a safety cabinet with extraction ventilation (see Subheading 3.1.).

Fig. 5. PFGE profiles from three Campylobacter spp. SmaI macrorestricted fragments ranging from 24 to 267 kbp are resolved by this method.

4. Microscopic examination by dilute carbol fuchsin staining. Prepared by dissolving 20 g of carbol fuchsin (BDH Chemicals, Poole, England) and liquefying 100 g of phenol (BDH Chemicals) together in a 3-L conical flask. Add 200 mL of absolute ethanol and 1715 mL of distilled water. Filter the resultant solution and dilute in sterile distilled water to give a 10% working carbol fuchsin solution (see Subheadings 3.1. and 3.3.1.).

5. Round-bottomed microcentrifuge tubes facilitate emulsification of organisms (see Subheading 3.1.)

6. Caution: care should be taken when handling phenol-chloroform. As phenol is an acid, it can cause skin burns. This reagent should only be handled in a safety cabinet with extraction ventilation (see Subheading 3.1.).

7. Ensure that none of the white layer at the interface of the phenol chloroform and DNA solution is disturbed (see Subheading 3.1.).

8. DNA suspensions may be stored at 4°C for up to 3 mo, or, alternatively, may be aliquoted and frozen at -20°C and thawed once prior to use (see Subheading 3.1.).

9. Optimal temperature for SmaI is 25-30°C (see Subheading 3.3.3.).

10. Up to four gel slices may be cut for digestion in 100 ^L total volume of restriction solution (see Subheading 3.3.3.).

11. Alternatively, agarose slices may be allowed to digest overnight (see Subheading 3.3.3.).

12. Prepare sufficient gel volumes according to the PFGE apparatus used. Quoted volume applies to the Gene Navigator System (Pharmacia Biotech, Uppsala, Sweden), having an actual gel size of 152 mm2 (see Subheading 3.3.4.).

13. Use blotting paper to blot dry the surface of wells, facilitating the loading of plug slices into the gel (see Subheading 3.3.4.).

14. Unused agarose can be allowed to solidify and can be reheated several times as needed (see Subheading 3.3.4.).


1 Jackson, C. J., Fox, A. J., and Jones, D. M. (1996) A novel polymerase chain reaction assay for the detection and speciation of thermophilic Campylobacter spp. J. Appl. Bacteriol. 81, 467-473.

2. On, S. L. W. and Holmes, B. (1991) Effect of inoculum size on the phenotypic characterisation of Campylobacter species. J. Clin. Microbiol. 33, 923-926.

3. Chan, V. L., Hani, E. K., Joe, A., Lynett, J., Ng, D., and Steele, M. (2000) The hippurate hydrolase gene and other unique genes of Campylobacter jejuni. In: Campylobacter (Nachamkin, I. and Blaser, M., eds.). American Society for Microbiology, Washington DC, pp. 455-463.

4 Gonzalez, I., Grant, K. A., Rirchardson, P. T., Park, S. F., and Collins M. D. (1997) Specific identification of the enteropathogens Campylobacter jejuni and Campylobacter coli by using a PCR test based on the ceuE gene encoding a putative virulence determinant. J. Clin. Microbiol. 35, 759-763.

5. Eyers, M., Chapelle, S., Van Camp, G., Goossens, H., and De Wachter, R. (1993) Discrimination among thermophilic Campylobacter species by polymerase chain reaction amplification of 23s rRNA gene fragments. J. Clin. Microbiol. 31, 3340-3343.

6. Hani, E. K. and Chan, V. L. (1995) Expression and characterisation of Campylobacter jejuni benzoylglycine amidohydrolase (hippuricase) gene in Escherichia coli. J. Bacteriol. 177, 2396-2402.

7. Waassenaar, T. M. and Newell, D. (2000) Genotyping of Campylobacter spp. Appl. Environ. Microbiol. 66, 1-9.

8 Mazurier, S., Van de Giessen, A., Heuvelman, K., and Wernars, K. (1992) RAPD analysis of Campylobacter isolates: DNA fingerprinting without the need to purify DNA. Lett. Appl. Microbiol. 14, 260-262.

9. M0ller Nielsen, E., Engberg, J., Fussing, V., Petersen, L., Brogren, C.-H., and On, S. L. W. (2000) Evaluation of phenotypic and genotypic methods for subtyping Campylobacter jejuni isolates from humans, poultry and cattle. J. Clin. Microbiol. 38, 3800-3810.

10. Levesque, C., Pyche, L., Larose, C., and Roy, P. H. (1995) PCR mapping of integrons reveals several novel combinations of resistance genes. Antimicrob. Agents Chemother. 39, 185-191.

11 Lucey, B., Crowley, D., Moloney, P., et al. (2000) Integronlike structures in Campylobacter spp. of human and animal origin. Emerg. Infect. Dis. 6, 50-55.

12 Allos, B. M. and Blaser, M. J. (1995) Campylobacter jejuni and the expanding spectrum of related infections. Clin. Infect. Dis. 20, 1092-1099.

13. Nachamkin, I., Engberg, J., and M0ller Aarestrup, F. (2000) Diagnosis and antimicrobial susceptibility of Campylobacter species. In: Campylobacter (Nachamkin, I. and Blaser, M., eds). American Society for Microbiology, Washington DC, pp. 45-66.

14 Gibreel, A., Sjögren, E., Kaijser, B., Wretland, B., and Sköld, O. (1998) Rapid emergence of high-level resistance to quinolones in Campylobacter jejuni associated with mutational changes in gyrA andparC. Antimicrob. Agents Chemother. 42, 3276-3278.

15 Adler-Mosca, H., Lüthy-Hottenstein, J., Martinetti-Lucchini, G., Burnens, A., and Altwegg, H. (1991) Development of resistance to quinolones in five patients with campylobacteriosis treated with norfloxacin or ciprofloxacin. Eur. J. Clin. Microbiol. Infect. Dis. 10, 953-957.

16 Endtz, H. P., Ruijs, G. J., van Klingeren, B., Jansen, W. H., van der Reyde ,T., and Mouton, R. P. (1991) Quinolone resistance in Campylobacter isolated from man and poultry following the introduction of fluoroquinolones in veterinary medicine. J. Antimicrob. Chemother. 27, 199-208.

17 Drlica, K. and Zhao, X. (1997) DNA gyrase, topoisomerase and the 4-quinolones. Microbiol. Mol. Biol. Rev. 61, 377-392.

18 Zirnstein, G., Swaminathan, B., and Angulo, F. (1999) Ciprofloxacin resistance in Campylobacter jejuni isolates: detection of gyrA resistance mutations by mismatch amplification mutation assay PCR and DNA sequence analysis. J. Clin. Microbiol. 37,3276-3280.

19 Zirnstein, G., Helsel, L., Li, Y., Swaminathan, B., and Besser, J. (2000) Characterisation of gyrA mutations associated with fluoroquinolone resistance in Campylobacter coli by DNA sequence analysis and MAMA PCR. FEMS Microbiol. Lett. 190, 1-7.

20 Lind, L., Sjögren, E., Melby, K., and Kaijser, B. (1996) DNA fingerprinting and serotyping of Campylobacter jejuni isolates from epidemic outbreaks. J. Clin. Microbiol. 34, 892-896.

21 Gibson, J. R., Sutherland, K., and Owen, R. J. (1994) Inhibition of DNAse activity in PFGE analysis of DNA from Campylobacter jejuni. Lett. Appl. Microbiol. 19, 357-358.

22 Lucey, B., Feurer, C., Greer, P., Moloney, P., Cryan, B., and Fanning, S. (2000) Antimicrobial resistance profiling and DNA amplification fingerprinting (DAF) of thermophilic Campylobacter spp. in human, poultry and porcine samples from the Cork region of Ireland. J. Appl. Microbiol. 89, 727-734.

23. Hänninen, M-L., Pajarre, S., Klossner, M-L., and Rautelin, H. (1998) Typing of human Campylobacter jejuni isolates in Finland by Pulsed-Field Gel Electrophoresis. J. Clin. Microbiol. 36, 1787-1789.

24. Linton, D., Lawson, A. J., Owen, R. J., and Stanley, J. (1997) PCR detection, identification to species level and fingerprinting of Campylobacter jejuni and Campylobacter coli direct from diarrheic samples. J. Clin. Microbiol. 35, 2568-2572.

Was this article helpful?

0 0

Post a comment