How Many Dentates Of S2o3

1 Nalbandyan RM, Vanin AF, Blumenfeld LA. EPR signals of a new type in yeast cells.Abstracts of the Meeting "Free radical processes in biological systems," Moscow, 1964; p. 18.

2 Vanin AF, Nalbandyan RM. Free radicals of a new type in yeast cells. Biofizika (Rus.) 1965; 10: 167-168.

3 Vanin AF, Blumenfeld LA, Chetverikov AG. Investigation of non-heme iron complexes in cells and tissues by the EPR method. Biofizika (Rus.) 1967; 12: 829-841.

4 Vithaythil AJ, Ternberg JL, Commoner B. Changes in electron spin resonance signals of rat liver during chemical carcinogenesis. Nature 1965; 207: 1246-1249.

5 Mallard JR, Kent M. Difference observed between electron spin resonance signals from surviving tumour tissues and from their corresponding normal tissues. Nature 1964; 204: 1192.

6 Vanin AF. Identification of divalent iron complexes with cysteine in biological systems by the EPR method. Biokhimia (Rus.) 1967; 32: 228-232.

7 Woolum JC, Tiezzi E, Commoner B. Electron spin resonance study of iron-nitric oxide complexes with amino acids, peptides and proteins. Biochim. Biophys. Acta 1968; 160: 311-320.

8 Vanin AF, Chetverikov AG. Paramagnetic nitrosyl complexes of heme and non-heme iron. Biofizika (Rus.) 1968; 13: 608-616.

9 Vanin AF, Blumenfeld LA, Burbaev DS, Lisovskaya IL, Chetverikov AG. Investigations of some iron complexes in biological objects. Proceedings of International Jubilee Conference on Paramagnetic Resonance, 1969 June 15-20; Kazan, 1970; Part 1: 218-223.

10 Woolum JC, Commoner B. Isolation and identification of a paramagnetic complex from the livers of carcinogen-treated rats. Biochim. Biophys. Acta 1970; 201: 131-140.

11 Commoner B, Woolum JC, Senturia BH, Ternberg JL. The effects of 2-acetoaminofluorene and nitrite on free radicals and carcinogenesis in rat liver. Cancer Res. 1970; 30: 2091-2097.

12 Vanin AF, Kubrina LN, Lisovskaya IL, Malenkova IV, Chetverikov AG. Endogenous heme and non-heme nitrosyl iron complexes in cells and tissues. Biofizika (Rus.) 1971; 16: 650-658.

13 Chetverikov AG, Ruuge EK, Burbaev DSh, Vanin AF. The change of the shape of the EPR signal with gav 2.03 in biological objects depending on the conditions of the registration. Biofizika (Rus.) 1969; 14: 932-935.

14 Vanin AF, Kiladze SV, Kubrina LN. On including of low molecular SH containing compounds in nitrosyl non-heme iron complexes in non-cellular or cellular preparations. Biofizika (Rus.) 1975; 20: 1068-1072.

15 Vanin AF. Nitrosyl non-heme iron complexes in animal tissues and microorganisms. D.Sc. Thesis, Institute of Chemical Physics, Moscow, 1980.

16 Lancaster JR, Hibbs JB. EPR demonstration of iron-nitrosyl complex formation by cytotoxic activated macrophages. Proc. Natl. Acad. Sci. USA 1990; 87: 1223-1227.

17 Pellat C, Henry Y, Drapier J-C. IFN-activated macrophages: detection by electronic paramagnetic resonance of complexes between l-arginine-derived nitric oxide and non-heme iron proteins. Biochem. Biophys. Res. Comm. 1990; 166: 119-125.

18 Drapier J-C, Pellat C, Henry Y. Generation of EPR-detectable nitrosyl-iron complexes in tumor target cells cocultured with activated macrophages. J. Biol. Chem. 1991; 266: 10162-10167.

19 Vanin AF, Mordvintcev PI, Hauschildt S, Mulsch A. The relationship between l-arginine-dependent nitric oxide synthesis, nitrite release and dinitrosyl-iron complex formation by activated macrophages. Biochim. Biophys. Acta 1993; 1177: 37-42.

20 Lancaster JR, Werner-Felmayer G, Wachter H. Coinduction of nitric oxide synthesis and intracellular nonheme nitrosyl-iron complexes in murine cytokine-treated fibroblasts. Free Rad. Biol. Med. 1994; 16: 869-870.

21 Stadler J, Bergonia HA, DiSilvio M, Sweetland MA, Billiar TR, Simmons RL, Lancaster JR. Nonheme nitrosyl-iron complex formation in rat hepatocytes: detection by EPR spectroscopy. Arch. Biochem. Biophys. 1993; 302: 4-11.

22 Nussler AK, Geller DA, Sweetland MA, DiSilvio M, Billiar TR, Madariaga JB, Simmons RL, Lancaster JR. Induction of nitric oxide synthesis and its reactions in cultured human and rat hepatocytes stimulated with cytokines plus LPS. Biochem. Biophys. Res. Commun. 1993; 194: 826-835.

23 Lepoivre M, Flaman J-L, Bobe P, Lemaire G, Henry Y. Quenching of the tyrosyl free radical of ribonucleotide reductase by nitric oxide. J. Biol. Chem. 1994; 269: 21891-21897.

24 Kim Y-M, Bergonia H, Lancaster JR. Nitrogen oxide-induced autoprotection in isolated rat hepatocytes. FEBS Lett. 1995; 374: 228-232.

25 Sergent O, Griffon B, Morel I, Chevanne M, Dubos M-P, Cillard P, Cillard J. Effect of nitric oxide on iron-mediated oxidative stress in primary hepatocyte culture. Hepatology 1997; 25: 122-127.

26 Geng Y-L, Petersson A-S, WennmalmA. Hannson G. Cytokine-induced expression of nitric oxide synthase results in nitrosylation of heme and nonheme iron proteins in vascular smooth muscle cells. Exp. Cell. Res. 1994; 214: 418-424.

27 Corbett JA, Sweetland MA, Wang JL, Lancaster JR, McDaniel ML. Nitric oxide mediates cytokine-induced inhibition of insulin secretion by human islets of Langerhans. Proc. Natl. Acad. Sci. USA 1993; 90: 1731-1735.

28 Muller B, Kleschyov AL, Stoclet J-C. Evidenvce for N-acetylcysteine-sensitive nitric oxide storage as dinitrosyl-iron complexes in lipopolysaccharide-treated rat aorta. Br. J. Pharmacol. 1996; 119: 1281-1285.

29 Lepoivre M, Flaman J-M, Henry Y. Early loss the tyrosyl radical of ribonucleotide reductase of adenocarcinoma cells producing nitric oxide. J. Biol. Chem. 1992; 267: 22994-23000.

30 Watts RN, Hawkins C, Ponka P, Richardson DR. Nitrogen monoxide (NO)-mediated iron release from cells is linked to NO-induced glutathione efflux via multidrug resistance-assotiated protein 1. Proc. Natl. Acad. Sci. USA 2006; 103: 7670-7675.

31 Chamulitrat W, Jordan SUJ, Mason RP, Litton AL, Wilson JG, Wood ER, Wolberg G, Molina Y, Vedia L. Targets of nitric oxide in a mouse model of liver inflammation by Corynebacterium parvum. Arch. Biochem. Biophys. 1995: 316: 30-37.

32 Doi K, Akaike T, Horie H, Noguchi Y, Fujii S, Beppu N, Ogawa M, Maeda H. Excessive production of nitric oxide in rat solid tumor and its implication in rapid tumor growth. Cancer 1996; 77: 1598-1604.

33 Lancaster JR, Langrehr JM, Bergonia HA, Murase N, Simmons RL, Hoffman RA. EPR detection of heme and nonheme iron-containing protein nitrosylation by nitric oxide during rejection of rat heart allograft. J. Biol. Chem. 1992; 267: 10994-10998.

34 Bastian NR, Xu S, Shao XL, Shelby J, Granger DL, Hibbs JB. N ffl-monomethyl-l-arginine inhibits nitric oxide production in murine cardiac allografts but does not affect graft rejections. Biochim. Biophys. Acta 1994; 1226: 225-231.

35 Mülsch A, Mordvintcev PI, Vanin AF, Busse R. Formation and release of dinitrosyl iron complexes by endothelial cells. Biochem. Biophys. Res. Commun. 1993; 196: 1303-1308.

36 McDonald CC, Phillips WD, Mower HF. An electron spin resonance study of some complexes of iron, nitric oxide and anionic ligands. J. Am. Chem. Soc. 1965; 87: 3319-3326.

37 Bryar M, Eaton DR. Electronic configuration and structure of paramagnetic iron dinitrosyl complexes. Can. J. Chem. 1992; 70: 1917-1926.

38 Burbaev DS. EPR investigation of the compounds modeling non-heme iron complexes from biological objects. Thesis, Physical Department, Moscow University, 1971.

39 Burbaev DS, Vanin AF, Blumenfeld LA. Electronic and spatial structures of paramagnetic dinitrosyl ferrous complexes. Zhurn. Strukt. Khimii (Rus.) 1971; 2: 252-256.

40 Vanin AF, Sanina NA, Serezhenkov VA, Burbaev DS, Lozinsky VI, Aldoshin SM. Dinitrosyl-iron complexes with thiol-containing ligands: Spatial and electronic structures. Nitric Oxide: Biol. Chem. 2007; 16: 82-93.

41 Sanina NA, Rakova OA, Aldoshin SM, Shilov GN, Shulga YM, Kulikov AV, Ovanesyan NS. Structure of the neutral monuclear dinitrosyl iron complex with 1,2,4-triazole-3-thione [Fe(SC2H3N3)2(N0)2]0.5H20. Mendeleev Comms. 2004; (1): 1-2.

42 Mordvintcev PI, Kubrina LN, Kleschyov AL, Vanin AF. On the origin of structural difference between nitrosyl non-heme iron complexes formed in animal tissued in vivo and in vitro. Stud. Biophys. 1984; 103: 63-70

43 Vanin AF, Stukan RA, Manukhina EB. Physical properties of dinitrosyl iron complexes with thiol-containing ligands in relation with their vasodilatory activity. Biochim. Biophys. Acta 1995; 1295: 5-12.

44 Vanin AF, Stukan RA, Manukhina EB. Dimer and monomer forms of dinitrosyl iron complexes with thiol-containing ligands: physicochemical properties and vasodilatory activity. Biofizika (Rus.) 1997; 42: 7-18.

45 Constanza S, Menage S, Purello R, Bonomo RP, Fontecave M. Re-examination of the formation of dinitrosyl-iron complexes during reaction of S-nitrosothiols with Fe(II). Inorg. Chim. Acta 2001; 318: 1-7.

46 Vanin AF, Papina AA, Serezhenkov VA, Koppenol WH. The mechanism of S-nitrosothiol decomposition catalyzed by iron. Nitric Oxide 2004; 10: 60-73.

47 Vanin AF. On the stability of the dinitrosyl-iron complex, a candidate for the endothelium-derived relaxing factor. Biochemistry (Mosc.) 1995; 60: 225-230.

48 Vanin AF, Kleschyov AL. EPR detection and biological implications of nitrosyl nonheme iron complexes. In Nitric Oxide in Transplant Rejection and Anti-Tumor Defense (Lukiewicz S, Zweier JL, eds.), Kluwer Academic Publishers, New York, 1998, pp. 49-82.

49 Lebedev JaS. Computer calculations of EPR spectra. 2. Asymmetric lines. Zhurnal Strukt. Khimii (Rus.) 1963; 4: 1074-1078.

50 Butler AR, Glidewell C, Li M-H. Nitrosyl complexes of iron-sulfur clusters. Adv. Inorg. Chem. 1988; 32: 335-393.

51 Goodman BA, Raynor JB, Symons MCR. Electron spin resonance of bis(NN-diethylthiocarbamate) nitrosyliron. J. Chem. Soc. A. 1969; 2572-2575.

52 Ileperuma OA, Feltham RD. Iron-sulfur complexes of NO. 2. Synthesis and exchange studies of Fe(NO)X[S2CN(CH3)2]2. Inorg. Chem. 1977; 16: 1876-1883.

53 Burbaev SS, Vanin AF. On modeling of non-heme iron complexes from biological objects. Dokl. Akad. Nauk SSSR (Rus.) 1970; 190: 1348-1350.

54 Vanin AF, Malenkova IV, Mordvintcev PI, Mülsch A. Dinitrosyl iron complexes with thiol-containing ligands and their reversible conversion into nitrosothiols. Biokhimiya (Rus.) 1993; 58: 1094-1103.

55 Vanin AF. Interconversion of two forms of endothelium-derived relaxing factor, S-nitrosocysteine and dinitrosyl iron complex with cysteine. Biofizika (Rus.) 1993; 38: 751-761.

56 Vanin AF, Burbaev DS, Mardanyan SS, Nalbandyan RM, Mutuskin AA, Pshonova KV. On the coordination of iron in iron-sulphur proteins with thiol groups. Symposial papers of IY International Biophysics Congress 1973; Part 2: 678-683.

57 Enemark JH, Feltham RD. Principles of structure, bonding and reactivity for metal nitrosyl complexes. Coord. Chem. Rev. 1974; 13: 340-404.

58 Burbaev DS, Vanin AF. Reduced form of nitrosyl non-heme iron complexes. Dokl. Akad. Nauk SSSR (Rus.) 1973; 213: 860-862.

59 Kennedy MC, Antholine WE, Beinert H. An EPR investigation of the products of the reaction of cytosolic and mitochondrial aconitases with nitric oxide. J. Biol. Chem. 1997; 272: 23340-23347.

60 Lobysheva II, Serezhenkov VA, Stukan RA, Bowman MK, Vanin AF. Redox transformation and stability of dinitrosyl-iron complexes with thiolate ligands as potential donor and transporters of nitric oxide. Biokhimiya (Rus.) 1997; 62: 934-942.

61 Foster MW, Cowan JA. Chemistry of nitric oxide with protein-bound iron sulfur centers. Insights on physiological reactivity. J. Am. Chem. Soc. 1999; 121: 4093-4100.

62 D'autreaux B, Horner O, Oddou J.-L, Jeandey C, Gambarelly S, Berthomieu C, Latour J.-M, Michaud-Soret I. Spectroscopic description of the two nitrosyl-iron complexe responsible for Fur inhibition by nitric oxide. J. Am. Chem. Soc. 2004; 126: 6005-6016.

63 Khalepp B, Luchkina S, Ovchinnikov I. Valence vibrations of the NO group and ESR spectra of nitrosyl complexes of iron and chromium. Russ. Chem. Bull. 1973; 22: 940-943.

64 Williams DLH. Nitrosation reactions and the chemistry of nitric oxide. Chapter 9 (a), Chaper 13 (b). Elsevier, Cornwall, UK, 2004.

65 Beinert H. Iron-sulfur proteins. New insights and unresolved problems. Biochim. Biophys. Acta Rev. Bioenerg. 1982; 683: 246-277.

66 Ding H, Demple B. Direct nitric oxide transduction via nitrosylation of iron-sulfur centers in the SoxR transcription activation. Proc. Natl. Acad. Sci. USA 2000; 97: 5146-5150.

67 Goodman BA, Raynor IB. An electron spin resonance study of the reaction of sulfide and dithionite with some iron (I) and iron (II) complexes: the valency and stereochemistry of iron in reduced non-heme iron proteins. J. Chem. Soc. A. 1970; 2038-2043.

68 Frolov EN, Vanin AF. New type of paramagnetic nitrosyl complexes of non-heme iron. Biofizika (Rus.) 1973; 18: 605-610.

69 Cruz-Ramos H, Crack J, Wu G, Hughes MN, Scott C, Thomson AJ, Green J, Poole RK. NO sensing by FNR: regulation of the Escherichia coli NO-detoxifying flavophaemoglobin, Hmp. EMBO J. 2002; 21: 3235-3244.

70 Vanin AF, Serezhenkov VA, Malenkova IV. Nitric oxide initiates iron binding to neocuproine. Nitric Oxide 2001; 5:166-175.

71 Vanin AF, Malenkova IV, Serezhenkov VA. Iron catalyzes both decomposition and synthesis of S-nitrosothiols: optical and EPR studies. Nitric Oxide 1997; 1:191-203.

72 Boese M, Mordvintcev PI, Vanin AF, Busse R, Mulsch A. S-nitrosation of serum albumin by dinitrosyl-iron complex. J. Biol. Chem. 1995; 270: 29244-29249.

73 Vanin AF, Serezhenkov VA, Mikoyan VD, Genkin MV. The 2.03 signal as an indicator of dinitrosyl-iron complexes with thiol-containing ligands. Nitric Oxide 1998; 2: 224-234.

74 Henry YA, Guissani A, Ducastel B. Nitric Oxide Research from Chemistry to Biology: EPR Spectroscopy of Nitrosylated Compounds. R.G. Landes Company, Austin, Texas, USA, 1996, 61-79.

75 Kennedy MC, Gan T, Antholine WE, Petering DH. Metallothioneine reacts with Fe2+ and NO to form products with g = 2.039 ESR signal. Biochem. Biophys. Res. Commun. 1993; 196: 632-635.

76 D'Autreaux B, Touati D, Bersch B, Latour J-M, Michaud-Soret I. Direct inhibition by nitric oxide of the transcriptional ferric uptake regulation protein via nitrosylation of the iron. Proc. Natl. Acad. Sci. USA 2002;99:16619-16624.

77 D'Autreaux B, Horner O, Oddou J-L, Jeandey C, Gambarelli S, Berthomieu C, Latour J-M, Michaud-Soret. Spectroscopic description of the two nitrosyl-iron complexes responsible for Fur inhibition by nitric oxide. J. Am. Chem. Soc. 2004; 126: 6005-6016.

78 Gomes CM, Vicente JB, Wasserfallen A, Teixeira M. Spectroscopic studies and characterizatiomn of a novel electron-trasnsfer chain from Escherichia coli involving a flavorubredoxin and its flavoprotein reductase partner. Biochemistry 2000; 39: 16320-16327.

79 Lee M, Arosio P, Cozzi A, Chasteen ND. Identification of the EPR-active iron-nitrosyl complexes in mammalian ferredoxin. Biochemistry 1994; 33: 3679-3687.

80 Boese M, Keese MA, Becker K, Busse R, Mülsch A. Inhibition of glutathione reductase by dinitrosyl-iron-dithiolate complexes. J. Biol. Chem. 1997; 272: 21767-21773.

81 De Maria F, Pedersen JZ, Cavccuri AM, Antonini G, Turella P, Stella L, Lo Bello M, Federici G, Ricci G. The specific interaction of dinitrosyl-diglutathionyl-iron complex, a natural NO carrier, with the glutathione transferase superfamily. J. Biol. Chem. 2003; 278: 42283-42393.

82 Vanin AF, Kalamkarov GR, Ostrovskii MA. On presence of near located two SH-groups in rhodopsin molecules. Biofizika (Rus.) 1977; 22: 397-408.

83 Sellers VM, Johnson MK, Daily HA. Function of the [2Fe-2S] cluster in mammalian ferrochelatase: a possible role as a nitric oxide sensor. Biochemistry 1996; 35: 2699-2704.

84 Bonner FT, Stedman G. The chemistry of nitric oxide and redox-related species. In Methods in Nitric Oxide Research (Feelish M, Stamler JS, eds.), John Wiley & Sons Ltd, New York, 1996, pp. 3-18.

85 Stojanovich S, Stanic D, Nikolic M, Spasic M, Niketic V. Iron catalyses conversion of NO to nitrosonium (NO+) and nitroxyl (HNO/NO-) species. Nitric Oxide 2004; 11: 256-262.

86 Franz KJ, Lippard SJ. NO disproportionation reactivivty of Fe tropocoronal complexes. J. Am. Chem. Soc. 1999; 121: 10504-10512.

87 Fukuto J, Switzer C, Miranda K, Wink D. Nitroxyl (HNO): chemistry, biochemistry and pharmacology. Ann. Rev. Pharmacol. Toxicol. 2005; 45: 335-355.

88 Vanin AF, Muller B, Alencar JL, Lobysheva II, Nepveu F, Stoclet J-C. Evidence that intrinsic iron but not intrinsic copper determines S-nitrosocysteine decomposition in buffer solution. Nitric Oxide 2002; 7: 194-209.

89 Wink DA, Nims RW, Darbyshire JF, Christodoulou D, Handbauer I, Cox GW, Laval F, Coon JA, Krishna MC, DeGraat WG, Mithell JB. Reaction kinetics for nitrosation of cysteine and glutathione in aerobic nitric oxide solutions at neutral pH. Insights into the fate and physiological effects of intermediates generated in the NO/O2 reaction. Chem. Res. Toxicol. 1994; 7: 5129-5525.

90 Guillaume P, Li Kam Wah H, Postel M. Coordination NO as a source of oxygen: Reactivity of the Fe(NO)2 moiety in the presence of the bidentate phosphane 1,2-bis (diphenylposphino) ethane (dppen). Inorg. Chem. 1991; 30: 1828-1831.

91 Munyeiabo V, Guillaume P, Postel M. Activation of molecular oxygen by iron nitrosyls in the presence of bidentate phosphines 1,2-bis (diphenylphosphino) ethane and ethane. Inorg. Chim. Acta 1994; 221: 133-139.

92 Munyeiabo V, Damiano J-P, Postel M, Bensimon C, Roustan JL. Reactivity of (Fe-NO)-(Fe-NO) system in the presence of a ferrocene-ferricinium group tethered nearby via a ferrocenyl phosphine linkage (FcP2): crystal structures of {{Fe(NO)2Cl}2 (^-FcP2)| and [Fe(NO)2(FcP2)]. J. Organometal. Chem. 1995; 491: 61-69.

93 Guillaume P, Postel M. Reactivity of 2-(dihenylphospino)pyridine and 2-(dihenylphospine oxide) pyridine and its relevance to oxygen activation. Inorg. Chem. Acta 1995; 233: 109-112.

94 Zabbarova IV, Shumaev KB, Vanin AF, Gubkin AA, Petrova NE, Ruuge EK. Interaction of ferritin and myoglobin as lipid peroxidation inducers: role of reactive oxygen and nitrogen species. Biophysics (Translated from Russian) 2004; 49: 607-613.

95 Gorbunov NV, Yalowich JC, Gaddam A, Thampaaty P, Kisin ER, Elsauyed NM, Kagan VE. Nitric oxide prevents oxidative damage produced by tert-butyl hydroperoxide in erythroleukemia cells via nitrosylation of heme and nonheme iron. J. Biol. Chem. 1997; 272: 12328-12341.

96 Shumaev KB, Lankin VZ, Ruuge EK, Vanin AF, Belenkov YuN. The mechanism of inhibition of free-radical oxidation of ß-carotene by S-nitrosoglutathione and iron dinitrosyl complexes. Dokl. Akad. Nauk SSSR (Rus.) 2001; 379: 273-275.

97 Shumaev KB, Petrova NE, Zabbarova IV, Vanin AF, Topunov AF, Lankin VZ, Ruuge EK. Interaction of oxoferrylmyoglobin and dinitrosyl-iron complexes. Biochemistry (Mosc.) 2004; 69: 569-574.

Shumaev KB, Gubkin AA, Gubkina SA, Gudkov LL, Timoshin AA, Topunov AF, Vanin AF, Ruuge EK. Interaction of dinitrosyl iron complexes with intermediates of oxidative stress. Biofizika (Rus.) 2006; 51: 472-477.

Mikoyan VD, Serezhenkov VA, Brazhnikova NV, Kubrina LN, Khachtryan GN, Vanin AF. Formation of paramagnetic nitrosyl complexes of nonheme iron in the animal organidsm with the participation of nitric oxide from exogenous and endogenous sources. Biophysics (Translated from Russian) 2004; 41: 110-116.

Gwost D, Caulton KG. Reductive nitrosylation of group Vlllb compounds. Inorg. Chem. 1973; 12: 2095-2099.

Connelly NG, Gardner C. Simple halogen nitrosyl anions of iron. J. Chem. Soc. Dalton Trans. 1976: 1525-1527.

Baltusis LM, Karlin KD, Rabinowitz HN, Dewan JC, Lippard SJ. Synthesis and structure of Fe(L*H)(NO)2, a tetracoordinate complex having a twelve-membered chelate ring, and its conversion to pentacoordinate FeL'(NO) through formal loss of "HNO" (L'=-SCH2 CH2NMECH2CH2CH2NMeCH2CH2S-). Inorg. Chem. 1980; 19: 2627-2623.

Reginato N, McCrory TC, Pervitsky D, Li L. Synthesis, X-ray crystal structure, and solution behavior ofFe(NO)2(I-MeIm)2: Implications for nitrosyl non-heme-iron complexes with g = 2.03. J. Am. Chem. Soc. 1999; 121: 10217-10218.

Sanina NA, Rakova OA, Aldoshin SM, Chuev II, Atovmyasn EG, Ovanesyan NS. Synthesis and X-ray and spectral study of the compounds [Q4N]2[Fe2(S2O3)2(NO)4] (Q = Me, Et, n-Pr, n-Bu). Russ. J. Coord. Chem. 2001; 27: 179-183.

Tsai M-I, Chen C-C, Hsu I-J, Ke S-C, Hsien C-H, Chiang K-A, Lee G-H, Wang Y, Chen J-M, Lee J-F, Liaw W-F. Photochemistry of the dinitrosyl iron complex [S5Fe(NO)2]- leading to reversible formation of [S5Fe(^-S)2FeS5]2-: spectroscopic characterization of species relevant to the nitric oxide modification and repair of [2Fe-2S] ferredoxins. Inorg. Chem. 2004; 43: 5159-5167. Chiang C-Y, Miller ML, Reibenspies JH, Darensbourg MY. Bismercaptoethandiazacyclooctane as a N2S2 chelating agent and cys-X-cys mimic for Fe(NO) and Fe(NO)2. J. Am. Chem. Soc. 2004; 126: 10867-10874.

Chen H-W, Lin C-W, Chen C-C, Yang L-B, Chiang M-H, Liaw W-F. Homodinuclear iron thiolate nitrosyl compounds [(ON)Fe(S,S—C6H4)Fe(NO)2]- and [(ON)Fe(SO2,S—C6H4)2Fe(NO)2]- with {Fe(NO)}7—{Fe(NO)2}9 electronic coupling: new members of a class of dinitrosyliron complexes. Inorg. Chem. 2005; 44: 3226-3232.

Wang X, Sundberg EB, Li L, Kantardjieff KA, Herron SR, Lim M, Ford P. A cyclic tetra-nuclear dinitrosyl iron complex [Fe(NO)2(imidazolate)4]: synthesis, structure and stability. Chem. Commun. 2005; 477-479.

Cesario E, Parker LJ, Pedersen JZ, Nuccetelli M, Mazzetti AP, Pastore A, Federici G, Caccuri AM, Ricci G, Adams JJ, Parker MW, LoBello M. Nitrosylation of human transferase P1-1 with dinitrosyl diglutathionyl iron complex in vitro and in vivo. J. Biol. Chem. 2005; 280: 42172-42180.

Griffith JS. The electronic structures of some first transition series metal porphyrins. Discuss. Faraday Soc. 1958; 26: 81-86.

McGarvey BR. The isotropic hyperfine interaction. J. Phys. Chem. 1967; 71: 51-67.

Van Konningsbruggen P, Maeda Y, Oshio H. Iron (III) spin crossover compounds. Top. Curr. Chem.

Vanin AF, Aliev DI. High spin nitrosyl iron complexes in animal tissues. Stud. Biophys. 1983; 93: 63-68.

Salerno JS, Siedow JH. The nature of the nitric oxide complexes of lipooxygenase. Biochim. Biophys. Acta 1979; 579: 246-251.

Farrar JA, Grinter R, Pountney DL, Thomson AJ. Optical and magnetic properties of iron(II)-nitrosyl complexes in model compounds. J. Chem. Soc. Dalton Trans. 1993; 2703-2709. Jo D-H, Chiou Y-M, Lawrence Q. Models for extradiol cleaving catechol dioxygenases: synthesis, structures and reactivity of iron(II)-monoanionic catecholate complexes. Inorg. Chem. 2001; 40: 3181-3190.

117 Hauser C, Glaser T, Bill E, Weyhermuller T, Wieghardt K. The electronic structure of an isostructural series of octahedral nitrosyliron complexes {FeNO}6'7'8 elucidated by Mössbauer spectroscopy. J. Am. Chem. Soc. 2000; 122: 4352-4365.

118 Jackson TA, Yikilmaz E, Miller A-F, Brunold TC. Spectroscopic and computational study of a non-heme iron {FeNO}7 system: exploring the geometric and electronic structures of the nitrosyl adduct of iron nitrosyl superoxide dismutase. J. Am. Chem. Soc. 2003; 125: 8348-8363.

119 Patra AK, Rowland JM, Marlin DS, Bill E, Olmstead MM, Masharak PK. Iron nitrosyl of a penta-dentate ligand containing a single carbaxamide group: synthesis, structures, electronic properties, and photolability of NO. Inorg. Chem. 2003; 42: 6812-6823.

120 Foster MA, Hutchison JMS. The origin of an EPR signal at g = 2.03 from normal rabbit liver and the effects of nitrites on it. Phys. Med. Biol. 1974; 19: 289-302.

121 Vanin AF, Kiladze SV, Kubrina LN. Factors influencing the formation of the dinitrosyl complexes with non-heme iron in animal organs in vivo. Biofizika (Rus.) 1977; 22: 850-857.

122 Vanin AF, Kiladze SV, Kubrina LN. Incorporation of non-heme iron into dinitrosyl complexes in the livers of mice in vivo. Biofizika (Rus.) 1978; 23: 474-480.

123 Vanin AF, Varich VJ. Formation of nitrosyl complexes of non-heme iron (complexes 2.03) in animal tissues in vivo. Biofizika (Rus.) 1979; 24: 666-670.

124 Vanin AF, Kubrina LN, Aliev DI. On the mechanism of nitrosyl non-heme iron complex formation in animal tissues. Stud. Biophys. 1980; 80: 221-230.

125 Vanin AF, Varich VJ. Nitrosyl non-heme iron complexes in animal tissues. Stud. Biophys. 1981; 86: 175-185.

126 Varich VJ, Vanin AF. Mechanism of formation of nitrosyl non-heme iron complexes in animal organisms. Biofizika (Rus.) 1983; 28: 1055-1060.

127 Tarasova NI, Kovalenko OA, Vanin AF. Mechanism of incorporation of iron into liver tissue. Biofizika (Rus.) 1981; 26: 677-682.

128 Vanin AF, Aliev DI. EPR signal shape of nitrosyl non-heme iron complexes as an indicator of prioteins components in these complexes. Stud. Biophys. 1983; 97: 223-229.

129 Mordvintcev PI, Kubrina LN, Kleschyov AL, Vanin AF. On the origin of structural differences between nitrosyl non-heme iron complexes formed in animal tissues in vivo or in vitro. Stud. Biophys. 1984; 103: 63-70.

130 Vanin AF, Kurbanov IS, Mordvintcev PI, Aliev DI. Influence of the intracellular medium on the structure of dinitrosyl complexes of non-heme iron in the liver of animals. Stud. Biophys. 1987; 120: 145-154.

131 Lobysheva II, Serezhenkov VA, Vanin AF. Interaction of peroxynitrite and hydrogen peroxide with dinitrosyl iron complexes containing thiol. Biokhimia (Rus.) 1999; 64: 194-200.

132 Vanin AF, Osipov AN, Kubrina LN, Burbaev DS, Nalbandyan RM. On the origin of paramagnetic centers with g = 2.03 in animal tissues and microorganisms. Stud. Biophys. 1975; 49: 13-25.

133 Nagata C, Ioki Y, Kodama M, Tagashira Y, Nakadate M. Free radical induced in rat liver by a chemical carcinogen, N-methyl-N'-nitro-N-nitrosoguanidine. Ann. NY. Acad. Sci. 1973; 222: 1031-1047.

134 Hutchison JMS, Foster MA, Mallard JR. Description of anomalous ESR signals from normal rabbit liver. Phys. Med. Biol. 1971; 16: 655-658.

This page intentionally left blank

© 2007 Elsevier B.V. All rights reserved. Radicals for Life: The Various Forms of Nitric Oxide E. van Faassen and A.F. Vanin (Eds.)

Diabetes 2

Diabetes 2

Diabetes is a disease that affects the way your body uses food. Normally, your body converts sugars, starches and other foods into a form of sugar called glucose. Your body uses glucose for fuel. The cells receive the glucose through the bloodstream. They then use insulin a hormone made by the pancreas to absorb the glucose, convert it into energy, and either use it or store it for later use. Learn more...

Get My Free Ebook


  • jemima
    How many dentates of S2O3?
    3 years ago

Post a comment