1 Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 2000; 408: 239-47.

2 Ushio-Fukai, M. Localizing NADPH oxidase-derived ROS. Sci STKE. 2006; re8.

3 MacMicking, J, Xie QW, Nathan C. Nitric oxide and macrophage function. Annu. Rev. Immunol. 1997; 15: 323-350.

4 Ignarro, LJ. Nitric oxide: a unique endogenous signaling molecule in vascular biology. Biosci. Rep. 1999; 19: 51-71.

5 Jaffrey, SR, Erdjument-Bromage H, Ferris CD, Tempst P, Snyder SH. Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat. Cell Biol. 2001; 3: 193-197.

6 Choi, PS, Naal Z, Moore C, Casado-Rivera E, Abruna HD, Helmann JD, Shapleigh JP. Assessing the impact of denitrifier-produced nitric oxide on other bacteria. Appl. Environ. Microbiol. 2006; 72: 2200-2205.

7 Fridovich, I. Superoxide radical and superoxide dismutases. Annu. Rev. Biochem. 1995; 64: 97-112.

8 Gardner PR, Fridovich I. Superoxide sensitivity of the Escherichia coli aconitase. J. Biol. Chem. 1991; 266: 19328-19333.

9 Gardner PR, Costantino G, Szabo C, Salzman AL. Nitric oxide sensitivity of the aconitases. J. Biol. Chem. 1997; 272: 25071-25076.

10 Foster MW, Cowan JA. Chemistry of nitric oxide with protein-bound iron sulfur centers. Insights on physiological reactivity. J. Am. Chem. Soc. 1999; 121: 4093-4100.

11 Cooper CE. Nitric oxide and iron proteins. Biochim. Biophys. Acta 1999; 1411: 290-309.

12 Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am. J. Physiol. 1996; 271: C1424-C1437.

13 Storz G, Imlay JA. Oxidative stress. Curr. Opin. Microbiol. 1999; 2: 188-194.

14 Demple B. Signal transduction by nitric oxide in cellular stress responses. Mol. Cell Biochem. 2002; 234-235: 11-18.

15 Rogers PA, Eide L, Klungland A, Ding H. Reversible inactivation of E. coli endonuclease III via modification of its [4Fe—4S] cluster by nitric oxide. DNA Repair (Amst.) 2003; 2: 809-817.

16 Wilson 3rd DM, Sofinowski TM, McNeill DR. Repair mechanisms for oxidative DNA damage. Front Biosci. 2003; 8: d963-d981.

17 Pomposiello PJ, Demple B. Global adjustment of microbial physiology during free radical stress. Adv. Microb. Physiol. 2002; 46: 319-341.

18 Demple B. Radical ideas: genetic responses to oxidative stress. Clin. Exp. Pharmacol. Physiol. 1999; 26: 64-68.

19 Demple B, Ding H, Jorgensen M. Escherichia coli SoxR protein: sensor/transducer of oxidative stress and nitric oxide. Methods Enzymol. 2002; 348: 355-364.

20 Reddy D, Lancaster Jr. JR, Cornforth DP. Nitrite inhibition of Clostridium botulinum: electron spin resonance detection of iron-nitric oxide complexes. Science 1983; 221: 769-770.

21 Lancaster Jr. JR, Hibbs Jr. JB. EPR demonstration of iron-nitrosyl complex formation by cytotoxic activated macrophages. Proc. Natl. Acad. Sci. USA 1990; 87: 1223-1227.

22 Drapier JC, Pellat C, Henry Y. Generation of EPR-detectable nitrosyl-iron complexes in tumor target cells cocultured with activated macrophages. J. Biol. Chem. 1991; 266: 10162-10167.

23 Henry Y, Ducrocq C, Drapier JC, Servent D, Pellat C, Guissani A. Nitric oxide, a biological effector. Electron paramagnetic resonance detection of nitrosyl-iron-protein complexes in whole cells. Eur. Biophys. J. 1991; 20: 1-15.

24 Henry Y, Lepoivre M, Drapier JC, Ducrocq C, Boucher JL, Guissani A. EPR characterization of molecular targets for NO in mammalian cells and organelles. FASEB J. 1993; 7: 1124-1134.

25 Stadler J, Billiar TR, Curran RD, Stuehr DJ, Ochoa JB, Simmons RL. Effect of exogenous and endogenous nitric oxide on mitochondrial respiration of rat hepatocytes. Am. J. Physiol. 1991; 260: C910-C916.

26 Pieper GM, Halligan NL, Hilton G, Konorev EA, Felix CC, Roza AM, Adams MB, Griffith OW. Non-heme iron protein: a potential target of nitric oxide in acute cardiac allograft rejection. Proc. Natl. Acad. Sci. USA 2003; 100: 3125-3130.

27 Johnson MK. Iron-sulfur proteins: new roles for old clusters. Curr. Opin. Chem. Biol. 1998; 2: 173-181.

28 Tamir S, Lewis RS, de Rojas Walker T, Deen WM, Wishnok JS, Tannenbaum SR. The influence of delivery rate on the chemistry and biological effects of nitric oxide. Chem. Res. Toxicol. 1993; 6: 895-899.

29 Li CQ, Trudel LJ, Wogan GN. Nitric oxide-induced genotoxicity, mitochondrial damage, and apoptosis in human lymphoblastoid cells expressing wild-type and mutant p53. Proc. Natl. Acad. Sci. USA 2002; 99: 10364-10369.

30 Amabile-Cuevas CF, Demple B. Molecular characterization of the soxRS genes of Escherichia coli: two genes control a superoxide stress regulon. Nucleic Acids Res. 1991; 19: 4479-4484.

31 Wu J, Weiss B. Two divergently transcribed genes, soxR and soxS, control a superoxide response regulon of Escherichia coli. J. Bacteriol. 1991; 173: 2864-2871.

32 Koutsolioutsou A, Martins EA, White DG, Levy SB, Demple B. A soxRS-constitutive mutation contributing to antibiotic resistance in a clinical isolate of Salmonella enterica (Serovar typhimurium). Antimicrob. Agents Chemother. 2001; 45: 38-43.

33 Li Z, Demple B. SoxS, an activator of superoxide stress genes in Escherichia coli. Purification and interaction with DNA. J. Biol. Chem. 1994; 269: 18371-18377.

34 Demple B. The Nexus of oxidative stress responses and antibiotic resistance mechanisms in Escherichia coli and Salmonella enterica. In Frontiers in Antibiotic Resistance: A Tribute to Stuart (Levy B, White DG, Alekshun MN, McDermott PF, eds.), ASM Press, Washington, DC, 2005, pp. 191-197.

35 White DG, Goldman JD, Demple B, Levy SB. Role of the acrAB locus in organic solvent tolerance mediated by expression of marA, soxS, or robAin Escherichia coli. J. Bacteriol. 1997; 179: 6122-6126.

36 Chou JH, Greenberg JT, Demple B. Posttranscriptional repression of Escherichia coli OmpF protein in response to redox stress: positive control of the micF antisense RNA by the soxRS locus. J. Bacteriol. 1993; 175: 1026-1031.

37 Demple B. Redox signaling and gene control in the Escherichia coli soxRS oxidative stress----a review.

38 Sies H. Oxidative stress: introduction. In Oxidative Stress: Oxidants and Antioxidants (Sies H, ed.), Academic Press, London, 1991, pp. xv-xxii.

39 Nunoshiba T, Hidalgo E, Amabile Cuevas CF, Demple B. Two-stage control of an oxidative stress regulon: the Escherichia coli SoxR protein triggers redox-inducible expression of the soxS regulatory gene. J. Bacteriol. 1992; 174: 6054-6060.

40 Nunoshiba T, Demple B. Potent intracellular oxidative stress exerted by the carcinogen 4-nitroquinoline-N-oxide. Cancer Res. 1993; 53: 3250-3252.

41 Nunoshiba T, deRojas-Walker T, Wishnok JS, Tannenbaum SR, Demple B. Activation by nitric oxide of an oxidative-stress response that defends Escherichia coli against activated macrophages Proc. Natl. Acad. Sci. USA 1993; 90: 9993-9997.

42 Chander M, Raducha-Grace L, Demple B. Transcription-defective soxR mutants of Escherichia coli: isolation and in vivo characterization. J. Bacteriol. 2003; 185: 2441-2450.

43 Nunoshiba T, DeRojas-Walker T, Tannenbaum SR, Demple B. Roles of nitric oxide in inducible resistance of Escherichia coli to activated murine macrophages. Infect. Immun. 1995; 63: 794-798.

44 Fang FC, Vazquez-Torres A, Xu Y. The transcriptional regulator SoxS is required for resistance of Salmonella typhimurium to paraquat but not for virulence in mice. Infect. Immun. 1997; 65: 5371-5375.

45 Ding H, Hidalgo E, Demple B. The redox state of the [2Fe—2S] clusters in SoxR protein regulates its activity as a transcription factor. J. Biol. Chem. 1996; 271: 33173-33175.

46 Hidalgo E, Ding H, Demple B. Redox signal transduction: mutations shifting [2Fe—2S] centers of the SoxR sensor-regulator to the oxidized form. Cell 1997; 88: 121-129.

47 Ding HG, Demple B. In vivo kinetics of a redox-regulated transcriptional switch. Proc. Natl Acad. Sci. USA 1997; 94: 8445-8449.

48 Gaudu P, Weiss B. SoxR, a [2Fe—2S] transcription factor, is active only in its oxidized form. Proc. Natl. Acad. Sci. USA 1996; 93: 10094-10098.

49 Gaudu P, Moon N, Weiss B. Regulation of the soxRS oxidative stress regulon. Reversible oxidation of the Fe-S centers of SoxR in vivo. J. Biol. Chem. 1997; 272: 5082-5086.

50 Hidalgo E, Demple B. An iron-sulfur center essential for transcriptional activation by the redox-sensing SoxR protein. EMBO J. 1994; 13: 138-146.

51 Hidalgo E, Bollinger Jr. JM, Bradley TM, Walsh CT, Demple B. Binuclear [2Fe-2S] clusters in the Escherichia coli SoxR protein and role of the metal centers in transcription. J. Biol. Chem. 1995; 270: 20908-20914.

52 Ding H, Demple B. Direct nitric oxide signal transduction via nitrosylation of iron- sulfur centers in the SoxR transcription activator. Proc. Natl. Acad. Sci. USA 2000; 97: 5146-5150.

53 Rogers PA, Ding H. L-cysteine-mediated destabilization of dinitrosyl iron complexes in proteins. J. Biol. chem. 2001; 276: 30980-30986.

54 Kennedy MC, Antholine WE, Beinert H. An EPR investigation of the products of the reaction of cytosolic and mitochondrial aconitases with nitric oxide. J. Biol. Chem. 1997; 272: 20340-20347.

55 Ding H, Demple B. Glutathione-mediated destabilization in vitro of [2Fe—2S] centers in the SoxR regulatory protein. Proc. Natl. Acad. Sci. USA 1996; 93: 9449-9453.

56 Yang W, Rogers PA, Ding H. Repair of nitric oxide-modified ferredoxin [2Fe—2S] cluster by cysteine desulfurase (IscS). J. Biol. Chem. 2002; 277: 12868-12873.

57 Zheng L, Cash VL, Flint DH, Dean DR. Assembly of iron-sulfur clusters. Identification of an iscSUA-hscBA-fdx gene cluster from Azotobacter vinelandii. J. Biol. Chem. 1998; 273: 13264-13272.

58 Flint DH. Escherichia coli contains a protein that is homologous in function and N-terminal sequence to the protein encoded by the nifS gene of Azotobacter vinelandii and that can participate in the synthesis of the Fe-S cluster of dihydroxy-acid dehydratase. J. Biol. Chem. 1996; 271: 16068-16074.

59 Cunningham RP, Asahara H, Bank JF, Scholes CP, Salerno JC, Surerus K, Munck E, McCracken J, Peisach J, Emptage MH. Endonuclease III is an iron-sulfur protein. Biochemistry 1989; 28: 4450-4455.

60 Aspinwall R, Rothwell DG, Roldan-Arjona T, Anselmino C, Ward CJ, Cheadle JP, Sampson JR, Lindahl T, Harris PC, Hickson ID. Cloning and characterization of a functional human homolog of Escherichia coli endonuclease III. Proc. Natl. Acad. Sci. USA 1997; 94: 109-114.

61 Thayer MM, Ahern H, Xing D, Cunningham RP, Tainer JA. Novel DNA binding motifs in the DNA repair enzyme endonuclease III crystal structure. EMBO J. 1995; 14: 4108-4120.

62 Tucker NP, D'Autreaux B, Spiro S, Dixon R. Mechanism of transcriptional regulation by the Escherichia coli nitric oxide sensor NorR. Biochem. Soc. Trans. 2006; 34: 191-194.

63 D'Autreaux B, Tucker NP, Dixon R, Spiro S. A non-haem iron centre in the transcription factor NorR senses nitric oxide. Nature 2005; 437: 769-772.

64 Newberry KJ, Brennan RG. The structural mechanism for transcription activation by MerR family member multidrug transporter activation, N terminus. J. Biol. Chem. 2004; 279: 20356-20362.

65 Hidalgo E, Demple B. Spacing of promoter elements regulates the basal expression of the soxS gene and converts SoxR from a transcriptional activator into a repressor. EMBO J. 1997; 16: 1056-1065.

66 O'Halloran TV, Frantz B, Shin MK, Ralston DM, Wright JG. The MerR heavy metal receptor mediates positive activation in a topologically novel transcription complex. Cell 1989; 56: 119-129.

67 Ansari AZ, Chael ML, O'Halloran TV. Allosteric underwinding of DNA is a critical step in positive control of transcription by Hg-MerR. Nature 1992; 355: 87-89.

68 Tsaneva IR, Weiss B. soxR, a locus governing a superoxide response regulon in Escherichia coli K-12. J. Bacteriol. 1990; 172: 4197-4205.

69 Nunoshiba T, Demple B. A cluster of constitutive mutations affecting the C-terminus of the redox-sensitive SoxR transcriptional activator. Nucleic Acids Res. 1994; 22: 2958-2962.

70 Godsey MH, Baranova NN, Neyfakh AA, Brennan RG. Crystal structure of MtaN, a global multidrug transporter gene activator. J. Biol. Chem. 2001; 276: 47178-47184.

71 Heldwein EE, Brennan RG. Crystal structure of the transcription activator BmrR bound to DNA and a drug. Nature 2001; 409: 378-382.

72 Changela A, Chen K, Xue Y, Holschen J, Outten CE, O'Halloran TV, Mondragon A. Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 2003; 301: 1383-1387.

73 Chander M, Demple B. Functional analysis of SoxR residues affecting transduction of oxidative stress signals into gene expression. J. Biol. Chem. 2004; 279: 41603-41610.

74 Privalle CT, Kong SE, Fridovich I. Induction of manganese-containing superoxide dismutase in anaerobic Escherichia coli by diamide and 1,10-phenanthroline: sites of transcriptional regulation. Proc. Natl. Acad. Sci. USA 1993; 90: 2310-2314.

75 Hidalgo E, Demple B. Activation of SoxR-dependent transcription in vitro by noncatalytic or NifS-mediated assembly of [2Fe—2S] clusters into apo-SoxR. J. Biol. Chem. 1996; 271: 7269-7272.

76 Bradley TM, Hidalgo E, Leautaud V, Ding H, Demple B. Cysteine-to-alanine replacements in the Escherichia coli SoxR protein and the role of the [2Fe—2S] centers in transcriptional activation. Nucleic Acids Res. 1997; 25: 1469-1475.

© 2007 Elsevier B.V. All rights reserved. Radicals for Life: The Various Forms of Nitric Oxide E. van Faassen and A.F. Vanin (Eds.)

0 0

Post a comment