Concluding Remarks

Chemo Secrets From a Breast Cancer Survivor

Breast Cancer Survivors

Get Instant Access

Dual-modality imaging is an approach that combines imaging modalities in a way that provides diagnostic information that is not available from a single imaging modality alone. Currently available dual-modality imaging systems include SPECT/CT or PET/CT, with which the radionuclide imaging technology (SPECT or PET) provides functional or metabolic information that is complementary to anatomical information provided by CT. In addition, the development of dual-modality systems that combine radionuclide imaging with magnetic resonance imaging is an area of active research. For spatial and temporal correlation, the dual-modality data can be presented as a fused image in which the radionuclide data are displayed in colour and are superposed on the gray-scale CT image. The resulting correlated data improves differentiation of foci of radionuclide uptake that can indicate disease from those representing normal physiological uptake that are benign.

Dual-modality imaging has been available clinically since the year 2000, and as such is a relatively recent development in the fields of diagnostic radiology and nuclear medicine. However, the commercial emergence of both PET/CT and SPECT/CT has been rapid and has benefited significantly from recent technological advances in the conventional SPECT, PET, and CT. The clinical growth of dual-modality imaging has been most dramatic in the area of PET/CT which now is available from all of the major medical imaging equipment manufacturers; some observers predict that all PET systems will be installed as PET/CT scanners in the near future. Over the past year, SPECT/CT has gained increased interest and has potential clinical applications in myocardial perfusion imaging and oncologic imaging. Newer high-resolution SPECT/CT and PET/CT systems also are becoming available for small animal imaging and are needed for molecular imaging, biological research, and pharmaceutical development in small animal models of human biology and disease.

At present dual-modality imaging is primarily used for structural-functional correlations. However, as this chapter has attempted to describe, dual-modality imaging also has important ramifications for radionuclide quantification, the major theme and focus of this volume. For example, dual-modality imaging provides x-ray CT data can be normalized to obtain a patient-specific map of attenuation coefficients that be used to compensate the correlated radionuclide data for photon attenuation or for Compton scatter. In addition, regions of interest defined anatomically on the CT image can be used to quantify the correlated radionuclide data in a way that allows more precise target and background definition, and that can use model-based methods that correct the extracted quantitative data for partial-volume effects and other perturbations. The use and understanding of dual-modality imaging as an enabling concept for radionuclide quantification is just starting to emerge. The importance of this development will only be understood and manifest over the ensuing years as PET/CT, SPECT/CT, and other forms of dual-modality imaging become available and are utilized for clinical studies of humans as well as biological investigations involving animal models of biology and disease.

References

1. Hasegawa B. H., Iwata, K., Wong, K. H. et al., Dual-modality imaging of function and physiology. Acad Radiol 9: 1305-1321 (2002).

2. Schiepers C. and Hoh, C. K., Positron emission tomography as a diagnostic tool in oncology. Eur Radiol 8: 1481-1494 (1998).

3. Zaidi H., Quantitative SPECT: Recent developments in detector response, attenuation and scatter correction techniques. Phys Med 12: 101-117 (1996).

4. Larsson A., Johansson, L., Sundstrom, T. et al., A method for attenuation and scatter correction of brain SPECT based on computed tomography images. Nucl Med Comm 24: 411-420 (2003).

5. Huang S. C., Hoffman, E. J., Phelps, M. E. et al., Quantitation in positron emission computed tomography. 1. Effects of inaccurate attenuation correction J Comput Assist Tomogr 3: 804-814 (1979).

6. Hoffman E. J., Huang, S. C. and Phelps, M. E., Quantitation in positron emission computed tomography. I. Effect of object size. J Comput Assist Tomogr 3: 299-308 (1979).

7. Tsui B., Frey, E., Zhao, X. et al., The importance and implementation of accurate 3D compensation methods for quantitative SPECT. Phys Med Biol 39: 509-530 (1994).

8. Tsui B. M. W., Zhao, X., Frey, E. et al., Quantitative single-photon emission computed tomography: Basics and clinical considerations. Semin Nucl Med 24: 38-65 (1994).

9. Rosenthal M. S., Cullom, J., Hawkins, W. et al., Quantitative SPECT imaging. A review and recommendations by the focus committee of the Society of Nuclear Medicine computer and instrumentation council. J Nucl Med 36: 1489-1513 (1995).

10. Zaidi H. and Hasegawa, B. H., Determination of the attenuation map in emission tomography. J Nucl Med 44: 291-315 (2003).

11. Shreve P. D., Adding structure to function J Nucl Med 41: 1380-1382 (2000).

12. Schillaci O. and Simonetti, G., Fusion imaging in nuclear medicine-Applications of dual-modality systems in oncology. Cancer Biother Radiopharm 19: 1-10 (2004).

13. Aizer-Dannon A., Bar-Am, A., Ron, I. G. et al, Fused functional-anatomic images of metastatic cancer of cervix obtained by a combined gamma camera and an x-ray tube hybrid system with an illustrative case and review of the F-18-fluorodeoxyglucose literature. Gynecol Oncol 90: 453-457 (2003).

14. Pfannenberg A. C., Eschmann, S. M., Horger, M. et al., Benefit of anatomical-functional image fusion in the diagnostic work-up of neuroendocrine neoplasms. Eur J Nucl Med Mol Imaging 30: 835-843 (2003).

15. Maintz J. B. and Viergever, M. A., A survey of medical image registration. Med Image Anal 2: 1-36 (1998).

16. Hutton B. F. and Braun, M., Software for image registration: algorithms, accuracy, efficacy. Semin Nucl Med 33: 180-192 (2003).

17. Slomka P. J., Software approach to merging molecular with anatomic information. J Nucl Med 45 Suppl 1: 36S-45S (2004).

18. Pellizzari C., Chen, G. T. Y., Spelbring, D. R. et al., Accurate three-dimensional registration of CT, PET, and/or MR images of the brain. J Comput Assist Tomogr 13: 20-26 (1989).

19. Pietrzyk U., Herholz, K., Fink, G. et al., An interactive technique for three-dimensional image registration: validation for PET, SPECT, MRI and CT brain studies. J Nucl Med 35: 2011-2018 (1994).

20. Visvikis D. and Ell, P. J., Impact of techology on the utilisation of positron emission tomography in lymphoma: current and future perspectives. Eur J Nucl Med Mol Imaging 30: S106-S116 (2003).

21. Da Silva A. J., Tang, H. R., Wong, K. H. et al., Absolute quantification of regional myocardial uptake of 99mTc-sestamibi with SPECT: experimental validation in a porcine model. J Nucl Med 42: 772-779 (2001).

22. Blankespoor S. C., Wu, X., Kalki, K. et al., Attenuation correction of SPECT using x-ray CT on an emission-transmission CT system: Myocardial perfusion assessment. IEEE Trans Nucl Sci 43: 2263-2274 (1996).

23. Hasegawa B. H., Gingold, E. L., Reilly, S. M. et al., Description of a simultaneous emission-transmission CT system. Proc SPIE Vol. 1231; pp 50-60 (1990).

24. Hasegawa B. H., Tang, H. R., Da Silva, A. J. et al., Dual-modality imaging. Nucl Instr Meth Phys Res A 471: 140-144 (2000).

25. Hasegawa B. H., Wong, K. H., Iwata, K. et al., Dual-modality imaging of cancer with SPECT/CT. Technol Cancer Res Treat 1: 449-458 (2002).

26. Lang T. F., Hasegawa, B. H., Liew, S. C. et al., Description of a prototype emission-transmission CT imaging system. J Nucl Med 33: 1881-1887 (1992).

27. Beyer T., Kinahan, P. E., Townsend, D. W. et al., ''The use of x-ray CT for attenuation correction of PET data'' IEEE Nuclear Science Symposium 1577 (1994).

28. Beyer T., Townsend, D. W., Brun, T. et al., A combined PET/CT scanner for clinical oncology. J Nucl Med 41: 1369-1379 (2000).

29. Townsend D., Kinahan, P. and Beyer, T., Attenuation correction for a combined 3D PET/CT scanner. Physica Medica 12: (Suppl 1) 43-48 (1996).

30. Townsend D. W., Beyer, T., Kinahan, P. E. et al., ''The SMART scanner: a combined PET/CT tomograph for clinical oncology'' IEEE Nuclear Science Symposium and Medical Imaging Conference, Vol. 2; pp 1170-1174 (1998).

31. Townsend D. W., A combined PET/CT scanner: the choices. J Nucl Med 42: 533534 (2001).

32. Townsend D. W. and Cherry, S. R., Combining anatomy and function: the path to true image fusion. Eur Radiol 11: 1968-1974 (2001).

33. Townsend D. W. and Beyer, T., A combined PET/CT scanner: the path to true image fusion. Brit J Radiol 75: S24-S30 (2002).

34. Townsend D. W., Beyer, T. and Blodgett, T. M., PET/CT scanners: a hardware approach to image fusion. Semin Nucl Med 33: 193-204 (2003).

35. Townsend D. W., Carney, J. P., Yap, J. T. et al., PET/CT today and tomorrow. J Nucl Med 45: Suppl 1 4S-14S (2004).

36. Vogel W. V., Oyen, W. J. G., Barentsz, J. O. et al., PET/CT: Panacea, redundancy, or something in between? J Nucl Med 45: 15S-24S (2004).

37. Phelps M. E., PET: The merging of biology and imaging into molecular imaging J Nucl Med 41: 661-681 (2000).

38. Wahl R. L., Why nearly all PET of abdominal and pelvic cancers will be performed as PET/CT. J Nucl Med 45: 82S-95S (2004).

39. Goerres G. W., von Schulthess, G. K. and Steinert, H. C., Why most PET of lung and head-and-neck cancer will be PET/CT. J Nucl Med 45: 66S-71S (2004).

40. Even-Sapir E., Keidar, Z., Sachs, J. et al., The new technology of combined transmission and emission tomography in evaluation of endocrine neoplasms. J Nucl Med 42: 998-1004 (2001).

41. Israel O., Keidar, Z., Iosilevsky, G. et al., The fusion of anatomic and physiologic imaging in the management of patients with cancer. Semin Nucl Med 31: 191-205 (2001).

42. Tang H. R., ''A Combined X-ray CT-Scintillation Camera System for Measuring Radionuclide Uptake in Tumors,'' Ph.D Thesis, University of California, 1998.

43. Kinahan P. E., Townsend, D. W., Beyer, T. et al., Attenuation correction for a combined 3D PET/CT scanner. Med Phys 25: 2046-2053 (1998).

44. Kinahan P. E., Hasegawa, B. H. and Beyer, T., X-ray-based attenuation correction for position tomography/computed tomography scanners. Semin Nucl Med 33: 166-179 (2003).

45. Mayneord W. V., The radiology of the human body with radioactive isotopes. Brit J Radiol 25: 517-525 (1952).

46. Mayneord W. V., Radiological research. Brit J Radiol 27: 309-317 (1954).

47. Mayneord W. V., Evans, H. D. and Newberry, S. P., An instrument for the formation of visual images of ionizing radiations. J Scient Instruments 32: 45-50 (1955).

48. Anger H. O., Whole-body scanner Mark II. J Nucl Med 7: 331-332 (1966).

49. Anger H. O. and McRae, J., Transmission scintiphotography. J Nucl Med 9: 267-269 (1968).

50. Cameron J. R. and Sorenson, J., Measurement of bone mineral in vivo: an improved method. Science 142: 230-232 (1963).

51. Kuhl D. E., Hale, J. and Eaton, W. L., Transmission scanning: A useful adjunct to conventional emission scanning for accurately keying isotope deposition to radiographic anatomy. Radiology 87: 278-284 (1966).

52. Kuhl D. E., Edwards, R. O., Ricci, A. R. et al., The Mark IV system for radionuclide computed tomography of the brain. Radiology 121: 405-413 (1976).

53. Budinger T. F. and Gullberg, G. T., Three-dimensional reconstruction in nuclear medicine emission imaging. IEEE Trans Nucl Sci NS-21: 2-20 (1974).

54. Mirshanov D. M., Transmission-Emission Computer Tomograph, USSR Patent 621.386:616-073 20.01.87-SU-181935 (January 20, 1987).

55. Kaplan C. H., Transmission/emission registered image (TERI) computed tomography scanners, International patent application No. PCT/US90/03722 (1989).

56. Hasegawa B. H., Tang, H. R., Iwata, K. et al., Correlation of structure and function with dual modality imaging. Physica Medica 17: 241-248 (2001).

57. Hasegawa B. H., Reilly, S. M., Gingold, E. L. et al., Design considerations for a simultaneous emission-transmission CT scanner. [abstract] Radiology 173(P): 414 (1989).

58. Lang T. F., Hasegawa, B. H., Liew, S. C. et al., ''A prototype emission-transmission imaging system'' IEEE Nuclear Science Symposium and Medical Imaging Conference, Santa Fe, NM, Vol. 3; pp 1902-1906 (1991).

59. Kalki K., Blankespoor, S. C., Brown, J. K. et al., Myocardial perfusion imaging with a combined x-ray CT and SPECT system. J Nucl Med 38: 1535-1540 (1997).

60. Kalki K., Heanue, J. A., Blankespoor, S. C. et al, A combined SPECT and CT medical imaging system. Proc SPIE Vol. 2432; pp 367-375 (1995).

61. Cohade C., Osman, M. M., Leal, J. et al., Direct comparison of F-18-FDG PET and PET/CT in patients with colorectal carcinoma. J Nucl Med 44: 1797-1803 (2003).

62. Fricke H., Fricke, E., Weise, R. et al., A method to remove artifacts in attenuation-corrected myocardial perfusion SPECT Introduced by misalignment between emission scan and CT-derived attenuation maps. J Nucl Med 45: 1619-1625 (2004).

63. Takahashi Y., Murase, K., Higashino, H. et al., Attenuation correction of myocardial SPECT images with X-ray CT: effects of registration errors between X-ray CT and SPECT. Ann Nucl Med 16: 431-435 (2002).

64. Blankespoor S. C., ''Attenuation correction of SPECT using x-ray CT for myocardial perfusion assessment,'' Master's thesis, University of California, 1996.

65. Koral K. F., Dewaraja, Y., Li, J. et al., Update on hybrid conjugate-view SPECT tumor dosimetry and response in 131I-tositumomab therapy of previously untreated lymphoma patients. J Nucl Med 44: 457-464 (2003).

66. Keidar Z., Israel, O. and Krausz, Y., SPECT/CT in tumor imaging? technical aspects and clinical applications. Semin Nucl Med 33: 205-218 (2003).

67. Even-Sapir E., Lerman, H., Lievshitz, G. et al., Lymphoscintigraphy for sentinel node mapping using a hybrid SPECT/CT system. J Nucl Med 44: 1413-1420 (2003).

68. Israel O., Mor, M., Gaitini, D. et al., Combined functional and structural evaluation of cancer patients with a hybrid camera-based PET/CT system using F-18 FDG. J Nucl Med 43: 1129-1136 (2002).

69. Tang H. R., Da Silva, A. J., Matthay, K. K. et al., Neuroblastoma imaging using a combined CT scanner-scintillation camera and I-131 MIBG. J Nucl Med 42: 237-247 (2001).

70. Bocher M., Balan, A., Krausz, Y. et al., Gamma camera-mounted anatomical x-ray tomography: technology, system characteristics, and first images. Eur J Nucl Med 27: 619-627 (2000).

71. Liu Y., Wackers, F. J., Natale, D. et al., Validation of a hybrid SPECT/CT system with attenuation correction: A phantom study and multicenter trial. [abstract] J Nucl Med 44: 209P (2003).

72. Rajasekar D., Datta, N. R., Gupta, R. K. et al., Multimodality image fusion in dose escalation studies in brain tumors. J Appl Clin Med Phys 4: 8-16 (2003).

73. Schoder H., Larson, S. M. and Yeung, H. W. D., PET/CT in oncology: Integration into clinical management of lymphoma, melanoma, and gastrointestinal malignancies. J Nucl Med 45: 72S-81S (2004).

74. Cook G. J. R. and Ott, R. J., Dual-modality imaging. Eur Radiol 11: 1857-1858 (2001).

75. Chang L. T., A method for attenuation correction in radionuclide computed tomography. IEEE Trans Nucl Sci NS-25: 638-643 (1978).

76. Harris C. C., Greer, K. L., Jaszczak, R. J. et al., Tc-99m attenuation coefficients in water-filled phantoms determined with gamma cameras. MedPhys 11: 681-685 (1985).

77. Malko J. A., Van Heertum, R. L., Gullberg, G. T. et al., SPECT liver imaging using an iterative attenuation correction algorithm and an external flood source. J Nucl Med 27: 701-705 (1986).

78. Thompson C. J., Ranger, N. T. and Evans, A. C., Simultaneous transmission and emission scans in positron emission tomography. IEEE Trans Nucl Sci 36: (1989).

79. Tsui B. M. W., Hu, H. B., Gilland, D. R. et al., Implementation of simultaneous attenuation and detector response correction in SPECT IEEE Trans Nucl Sci NS-35: 778-783 (1988).

80. Tsui B. M. W., Gullberg, G. T., Edgerton, E. R. et al., Correction of nonuniform attenuation in cardiac SPECT imaging J Nucl Med 30: 497-507 (1989).

81. Blankespoor S., Wu, X., Kalki, K. et al., ''Attenuation correction of SPECT using x-ray CT on an emission-transmission CT system'' IEEE Nuclear Science Symposium and Medical Imaging Conference, Vol. 2; pp 1126-1130 (1995).

82. LaCroix K. J., ''An investigation of the use of single-energy x-ray CT images for attenuation compensation in SPECT,'' Master's thesis, University of North Carolina at Chapel Hill, 1994.

83. Perring S., Summers, Q., Fleming, J. et al., A new method of quantification of the pulmonary regional distribution of aerosols using combined CT and SPECT and its application to nedocromil sodium administered by metered dose inhaler. Br J Radiol 67: 46-53 (1994).

84. Gullberg G. T., Huesman, R. H., Malko, J. A. et al., An attenuated projector-backprojector for iterative SPECT reconstruction. Phys Med Biol 30: 799-816 (1985).

85. Ficaro E. P. and Wackers, F. J., Should SPET attenuation correction be more widely employed in routine clinical practice? Eur J Nucl Med 29: 409-412 (2002).

86. Antoch G., Freudenberg, L. S., Beyer, T. et al., To enhance or not to enhance: [F-18]-FDG and CT contrast agents in dual-modality [F-18]-FDG PET/CT. J Nucl Med 45: 56S-65S (2004).

87. Carney J. P., Beyer, T., Brasse, D. et al., Clinical PET/CT using oral CT contrast agents. [abstract] J Nucl Med 44: 272P (2002).

88. Mukai T., Links, J. M., Douglass, K. H. et al., Scatter correction in SPECT using non-uniform attenuation data. Phys Med Biol 33: 1129-1140 (1988).

89. Kessler R. M., Ellis, J. R. and Eden, M., Analysis of emission tomographic scan data: Limitations imposed by resolution and background. J Comput Assist Tomogr 8: 514-522 (1984).

90. Tang H. R., Brown, J. K. and Hasegawa, B. H., Use of x-ray CT-defined regions of interest for the determination of SPECT recovery coefficients. IEEE Trans Nucl Sci 44: 1594-1599 (1997).

91. Koole M., Laere, K. V., de Walle, R. V. et al, MRI guided segmentation and quantification of SPECT images of the basal ganglia: a phantom study. Comput Med Imaging Graph 25: 165-172 (2001).

92. Rousset O. G., Ma, Y. and Evans, A. C., Correction for partial volume effects in PET: principle and validation. J Nucl Med 39: 904-911 (1998).

93. Meltzer C. C., Kinahan, P. E., Greer, P. J. et al., Comparative evaluation of MR-based partial-volume correction schemes for PET. J Nucl Med 40: 20532065 (1999).

94. Koral K. F., Li, J., Dewaraja, Y. et al., I-131 anti-B1 therapy/tracer uptake ratio using a new procedure for fusion of tracer images to computed tomography images. Clin Cancer Res 5: 3004s-3009s (1999).

95. Koral K. F., Dewaraja, Y., Clarke, L. A. et al., Tumor-absorbed-dose estimates versus response in tositumomab therapy of previously untreated patients with follicular non-Hodgkin's lymphoma: preliminary report. Cancer Biother Radio-pharm 15: 347-355 (2000).

96. Formiconi A. R., Least squares algorithm for region-of-interest evaluation in emission tomography. IEEE Trans Med Imag 12: 90-100 (1993).

97. Liu A., Williams, L. E. and Raubitschek, A. A., A CT assisted method for absolute quantitation of internal radioactivity. Med Phys 23: 1919-1228 (1996).

98. Carson R. E., A maximum likelihood method for region-of-interest evaluation in emission tomography. J Comput Assist Tomogr 100: 654-663 (1986).

99. Koral K. F., Zasadny, K. R., Kessler, M. L. et al., CT-SPECT fusion plus conjugate views for determining dosimetry in iodine-131-monoclonal antibody therapy of lymphoma patients. J Nucl Med 35: 1714-1720 (1994).

100. Koral K. F., Lin, S., Fessler, J. A. et al., Preliminary results from intensity-based CT-SPECT fusion in I-131 anti-B1 monoclonal-antibody therapy of lymphoma. Cancer 80: 2538-2544 (1997).

101. Koral K. F., Dewaraja, Y., Li, J. et al., Initial results for hybrid SPECT -conjugate-view tumor dosimetry in 131I-anti-B1 antibody therapy of previously untreated patients with lymphoma. J Nucl Med 41: 1579-1586 (2000).

102. Koral K. F., Francis, I. R., Kroll, S. et al., Volume reduction versus radiation dose for tumors in previously untreated lymphoma patients who received iod-ine-131 tositumomab therapy. Conjugate views compared with a hybrid method. Cancer 94: 1258-1263 (2002).

103. Koral K. F., Kaminski, M. S. and Wahl, R. L., Correlation of tumor radiation-absorbed dose with response is easier to find in previously untreated patients. J Nucl Med 44: 1541-1543 (2003).

104. Koral K. F., Zaidi, H. and Ljungberg, M., ''Medical imaging techniques for radiation dosimetry'' in: Therapeutic applications of Monte Carlo calculations in nuclear medicine, edited by H Zaidi and G Sgouros Institute of Physics Publishing, Bristol, (2002), pp 55-83.

105. Patton J. A., Delbeke, D. and Sandler, M. P., Image fusion using an integrated, dual-head coincidence camera with x-ray tube-based attenuation maps. J Nucl Med 41: 1364-1368 (2000).

106. Ratib O., PET/CT image navigation and communication. J Nucl Med 45: 46S-55S (2004).

107. Steinert H. C. and von Schulthess, G. K., Initial clinical experience using a new integrated in-line PET/CT system. Br J Radiol 73: S36-S38 (2002).

108. Beyer T., Antoch, G., Muller, S. et al., Acquisition protocol considerations for combined PET/CT imaging. J Nucl Med 45: 25S-35S (2004).

109. Bar-Shalom R., Yefemov, N., Guralnik, L. et al., Clinical performance of PET/ CT in evaluation of cancer: Additional value for diagnostic imaging and patient management. J Nucl Med 44: 1200-1209 (2003).

110. Cohade C. and Wahl, R. L., Applications of positron emission tomography/ computed tomography image fusion in clinical positron emission tomography -clinical use, interpretation, methods, diagnostic improvements. Semin Nucl Med 33: 228-237 (2003).

111. Cherry S. R., In vivo molecular and genomic imaging: new challenges for imaging physics. Phys Med Biol 49: R13-R48 (2004).

112. Weissleder R. and Mahmood, U., Molecular imaging. Radiology 219: 316-333 (2001).

113. Hanahan D., Transgenic mice as probes into complex systems. Science 246: 1265-1275 (1989).

114. Sigmund C. D., Major approaches for generating and analyzing transgenic mice. Hypertension 22: 599-607 (1993).

115. Wight D. C. and Wagner, T. E., Transgenic mice: a decade of progress in technology and research. Mutation Res 307: 429-440 (1994).

116. James J. F., Hewett, T. E. and Robbins, J., Cardiac physiology in transgenic mice. Circ Res 82: 407-415 (1998).

117. Wu M. C., Gao, D. W., Sievers, R. E. et al., Pinhole single-photon emission computed tomography for myocardial perfusion imaging of mice. J Am Coll Cardiol 42: 576-582 (2003).

118. Paulus M. J., Sari-Sarraf, H., Bleason, S. S. et al., A new x-ray computed tomography system for laboratory mouse imaging. IEEE Trans Nucl Sci 46: 558-564 (1999).

119. Cherry S. R., Shao, Y., Silverman, R. W. et al., MicroPET: a high resolution PET scanner for imaging small animals. IEEE Trans Nucl Sci 44: 1161-1166 (1997).

120. Hasegawa B. H., Wu, M. C., Iwata, K. et al., Applications of penetrating radiation for small animal imaging. Proc SPIE Vol. 4786; pp 80-90 (2002).

121. Paulus M. J., Gleason, S. S., Kennel, S. J. et al., High resolution X-ray computed tomography: an emerging tool for small animal cancer research. Neoplasia 2: 62-70 (2000).

122. Kennel S. J., Davis, I. A., Branning, J. et al., High resolution computed tomography and MRI for monitoring lung tumor growth in mice undergoing radioimmunotherapy: correlation with histology. Med Phys 27: 1101-1107 (2000).

123. Paulus M. J., Gleason, S. S., Easterly, M. E. et al., A review of high-resolution X-ray computed tomography and other imaging modalities for small animal research. Lab Anim (NY) 30: 36-45 (2001).

124. Ishizu K., Mukai, T., Yonekura, Y. et al., Ultra-high resolution SPECT system using four pinhole collimators for small animal studies. J Nucl Med 36: 22822286 (1995).

125. Jaszczak R. J., Li, J., Wang, H. et al., Pinhole collimation for ultra highresolution, small field of view SPECT. Phys Med Biol 39: 425-437 (1994).

126. MacDonald L. R., Patt, B. E., Iwanczyk, J. S. et al., Pinhole SPECT of mice using the LumaGEM gamma camera. IEEE Trans Nucl Sci 48: 830-836 (2001).

127. Ogawa K., Kawade, T., Nakamura, K. et al., Ultra high resolution pinhole SPECT for small animal study. IEEE Trans Nucl Sci 45: 3122-3126 (1998).

128. Wu M. C., Hasegawa, B. H. and Dae, M. W., Performance evaluation of a pinhole SPECT system for myocardial perfusion imaging of mice. Med Phys 29: 2830-2839 (2002).

129. Weber D. A. and Ivanovic, M., Pinhole SPECT: ultra-high resolution imaging for small animal studies. J Nucl Med 36: 2287-2289 (1995).

130. Shao Y., Cherry, S. R., Farahani, K. et al, Simultaneous PET and MR imaging. Phys Med Biol 42: 1965-1970 (1997).

131. Goertzen A. L., Meadors, A. K., Silverman, R. W. et al., Simultaneous molecular and anatomical imaging of the mouse in vivo. Phys Med Biol 21: 43154328 (2002).

132. Weisenberger A. G., Wojcik, R., Bradley, E. L. et al, SPECT-CT system for small animal imaging. IEEE Trans Nucl Sci 50: 74-79 (2003).

133. Williams M. B., Zhang, G., More, M. J. et al., Integrated CT-SPECT system for small animal imaging. Proc SPIE Vol. 4142; pp 265-274 (2000).

134. Welsh R. E., Brewer, P., Bradley, E. L. et al., ''An economical dual-modality small animal imaging system with application to studies of diabetes'' IEEE Nuclear Science Symposium and Medical Imaging Conference Record, Vol. 3; pp 1845-1848 (2002).

135. Kastis G. A., Furenlid, L. R., Wilson, D. W. et al., Compact CT/SPECT small-animal imaging system. IEEE Trans Nucl Sci 51: 63-67 (2004).

136. Iwata K., Wu, M. C. and Hasegawa, B. H., ''Design of combined x-ray CT and SPECT systems for small animals'' IEEE Nuclear Science Symposium and Medical Imaging Conference Record, Vol. 3; pp 1608-1612 (1999).

137. Iwata K., Hwang, A. B., Wu, M. C. et al., ''Design and utility of a small animal CT/SPECT system'' IEEE Nuclear Science Symposium and Medical Imaging Conference Record, Vol. 3; pp 1849-1852 (2002).

138. MacDonald L. R., Iwata, K., Patt, B. E. et al., Evaluation of x-ray detectors for dual-modality CT-SPECT animal imaging. Proc SPIE Vol. 4786; pp 91-102 (2002).

139. Andre M. P., Spivey, B. A., Martin, P. J. et al., Integrated CMOS-selenium x-ray detector for digital mammography. Proc SPIE Vol. 3336; pp 204-209 (1998).

140. Song X., Frey, E. C. and Tsui, B. M. W., "Development and evaluation of a microCT system for small animal imaging'' IEEE Nuclear Science Symposium and Medical Imaging Conference Record, Vol. 3; pp 1600-1604 (2002).

141. Hwang A. B., Iwata, K., Sakdinawat, A. E. et al., ''Gantry specifications for a dual modality imaging system for small animals'' IEEE Nuclear Science Symposium and Medical Imaging Conference Record, Vol. 2; pp 1303-1307 (2003).

142. Varady P., Li, J. Z., Alden, T. D. et al., CT and radionuclide study of BMP-2 gene therapy-induced bone formation. Acad Radiol 9: 632-637 (2002).

143. MacDonald L. R., Iwanczyk, J. S., Patt, B. E. et al., ''Development of new high resolution detectors for small animal SPECT imaging'' IEEE Nuclear Science Symposium and Medical Imaging Conference Record, Vol. 3; pp 21/ 75 (2002).

144. McElroy D. P., MacDonald, L. R., Beekman, F. J. et al., Performance evaluation of A-SPECT: A high resolution desktop pinhole SPECT system for imaging small animals. IEEE Trans Nucl Sci 49: 2139-2147 (2002).

Yazaki P. J., Shively, L., Clark, C. et al, Mammalian expression and hollow fiber bioreactor production of recombinant anti-CEA diabody and minibody for clinical applications. J Immun Methods 253: 195-208 (2001). Hasegawa B. H., Barber, W. C., Funk, T. et al., Implementation and applications of dual-modality imaging. Nucl Instr Meth Phys Res A 525: 236-241 (2004).

Weber D. A. and Ivanovic, M., Ultra-high-resolution imaging of small animals: implications for preclinical and research studies. J Nucl Cardiol 6: 332-344 (1999).

Paulino A. C., Thorstad, W. L. and Fox, T., Role of fusion in radiotherapy treatment planning Semin Nucl Med 33: 238-243 (2003).

Munley M. T., Marks, L. B., Scarfone, C. et al., Multimodality nuclear medicine imaging in three-dimensional radiation treatment planning for lung cancer: challenges and prospects. Lung Cancer 23: 105-14 (1999). Osman M. M., Cohade, C., Nakamoto, Y. et al., Clinically significant inaccurate localization of lesions with PET/CT: frequency in 300 patients. J Nucl Med 44: 240-243 (2003).

Nahmias C., Nutt, R., Hichwa, R. D. et al., PET tomograph designed for five minute routine whole body studies. [abstract] J Nucl Med 43: 11P (2002). Nelson S. J., Vigneron, D. B. and Dillon, W. P., Serial evaluation of patients with brain tumors using volume MRI and 3D *H MRSI. NMR Biomed 12: 123138 (1999).

Kurhanewicz J., Swanson, M. G., Nelson, S. J. et al., Combined magnetic resonance imaging and spectroscopic imaging approach to molecular imaging of prostate cancer. J Magn Reson Imaging 16: 451-463 (2002). Boxt L. M., Lipton, M. J., Kwong, R. Y. et al., Computed tomography for assessment of cardiac chambers, valves, myocardium and pericardium. Cardiol Clin 21: 561-585 (2003).

Chan F. P., Cardiac multidetector-row computed tomography: principles and applications. Semin Roentgenol 38: 294-302 (2003).

Nieman K., Rensing, B., Munne, A. et al., Three-dimensional coronary anatomy in contrast-enhanced multislice computed tomography. Prev Cardiol 5: 7983 (2002).

Foley W. D. and Karcaaltincaba, M., Computed tomography angiography: Principles and clinical applications. J Comput Assist Tomogr 27: S23-S30 (2003). Peterson T. F., Kim, H., Crawford, M. J. et al., "SemiSPECT: A small-animal imaging system based on eight CdZnTe pixel detectors'' IEEE Nuclear Science Symposium and Medical Imaging Conference Record, Vol. 3; pp 1844-1847 (2003).

Liu Z., Kastis, G. A., Stevenson, G. D. et al., Quantitative analysis of acute myocardial infarct in rat hearts with ischemia-reperfusion using a high-resolution stationary SPECT system. J Nucl Med 43: 933-939 (2002). Schramm N. U., Ebel, G., Engeland, U. et al., High-resolution SPECT using multipinhole collimation. IEEE Trans Nucl Sci 50: 315-320 (2003). Shao Y., Cherry, S. R., Farahani, K. et al., Development of a PET detector system compatible with MRI/NMR systems. IEEE Trans Nucl Sci 44: 11671171 (1997).

Slates R., Cherry, S. R., Boutefnouchet, A. et al., Design of a small animal MR compatible PET scanner. IEEE Trans Nucl Sci 46: 565-570 (1999).

163. Christensen N. L., Hammer, B. E., Heil, B. G. et al, Positron emission tomography within a magnetic field using photomultiplier tubes and light-guides. Phys MedBiol 40: 691-697 (1995).

164. Hammer B. E., Christensen, N. L. and Heil, B. G., Use of a magnetic field to increase the spatial resolution of positron emission tomography. Med Phys 21: 1917-1920 (1994).

165. Mackewn J. E., Strul, D., Hallett, W. A. et al., ''Design and development of an MR-compatible PET scanner for imaging small animals'' IEEE Nuclear Science Symposium and Medical Imaging Conference, Rome, Italy, (2004) in press

166. Gaa J., Rummeny, E. J. and Seemann, M. D., Whole-body imaging with PET/ MRI. Eur J Med Res 30: 309-312 (2004).

167. Maronpot R. R., Sills, R. C. and Johnson, G. A., Applications of magnetic resonance microscopy. Toxicol Pathol 32: 42-48 (2004).

168. Johnson G. A., Cofer, G. P., Gewalt, S. L. et al., Morphologic phenotyping with MR microscopy: the visible mouse. Radiology 222: 789-793 (2002).

169. Hu X. and Norris, D. G., Advances in high-field magnetic resonance imaging. Annu Rev Biomed Eng 6: 157-184 (2004).

170. Lima J. A. and Desai, M. Y., Cardiovascular magnetic resonance imaging: current and emerging applications. J Am Coll Cardiol 15: 1164-1171 (2004).

171. Hasumi M., Suzuki, K., Taketomi, A. et al., The combination of multi-voxel MR spectroscopy with MR imaging improve the diagnostic accuracy for localization of prostate cancer. Anticancer Res 23: 4223-4227 (2003).

172. Yeung D. K., Yang, W. T. and Tse, G. M., Breast cancer: in vivo proton MR spectroscopy in the characterization of histopathologic subtypes and preliminary observations in axillary node metastases. Radiology 225: 190-197 (2002).

173. Turner D. A., MR spectroscopy and imaging of breast cancer. A brief history. Magn Reson Imaging Clin N Am 2: 505-510 (1994).

174. Coakley F. V., Teh, H. S., Qayyum, A. et al, Endorectal MR imaging and MR spectroscopic imaging for locally recurrent prostate cancer after external beam radiation therapy: preliminary experience. Radiology 233: 441-448 (2004).

175. Coakley F. V., Qayyum, A. and Kurhanewicz, J., Magnetic resonance imaging and spectroscopic imaging of prostate cancer. J Urol 170: S69-75; discussion S75-76 (2003).

176. Swanson M. G., Vigneron, D. B., Tran, T. K. et al., Magnetic resonance imaging and spectroscopic imaging of prostate cancer. Cancer Invest 19: 510523 (2001).

177. Vick G. W., Recent advances in pediatric cardiovascular MRI. Curr Opin Pediatr 15: 454-462 (2003).

178. Zaidi H., Montandon, M.-L. and Slosman, D. O., Magnetic resonance imaging-guided attenuation and scatter corrections in three-dimensional brain positron emission tomography. Med Phys 30: 937-948 (2003).

179. Slates R., Farahani, K., Shao, Y. et al., A study of artefacts in simultaneous PET and MR imaging using a prototype MR comptatible PET scanner. Phys Med Biol 44: 2015-2027 (1999).

180. Garlick P. B., Marsden, P. K., Cave, A. C. et al, PET and NMR dual acquisition (PANDA): Applications to isolated perfused rat hearts. NMR Biomed 10: 138-142 (1997).

181. Garlick P. B., Simultaneous PET and NMR-Initial results from isolated, perfused rat hearts. Br J Radiol 75 Spec No: S60-66 (2002).

182. Marsden P. K., Strul, D., Keevil, S. F. et al., Simultaneous PET and NMR. Br J Radiol 75 Spec No: S53-59 (2002).

183. Pichler B., Lorenz, E., Mirzoyan, R. et al., ''Performance tests of a LSO-APD PET module in a 9.4 Tesla magnet'' IEEE Nuclear Science Symposium and Medical Imaging Conference Record, Vol. 2; pp 1237-1239 (1997).

Was this article helpful?

0 0

Post a comment