References

1. Jones T., The role of positron emission tomography within the spectrum of medical imaging. Eur J Nucl Med 23: 207-211 (1996).

2. Anger H., Scintillation camera. Rev Sci Instr 29: 27-33 (1958).

3. Moore S. C., Kouris, K. and Cullum, I., Collimator design for single photon emission tomography. Eur J Nucl Med 19: 138-150 (1992).

4. Jaszczak R. J., Greer, K. L. and Coleman, R. E., SPECT using a specially designed cone beam collimator. J Nucl Med 29: 1398-1405 (1988).

5. Tsui B. M. and Gullberg, G. T., The geometric transfer function for cone and fan beam collimators. Phys Med Biol 35: 81-93 (1990).

6. Weber D. A. and Ivanovic, M., Ultra-high-resolution imaging of small animals: implications for preclinical and research studies. J Nucl Cardiol 6: 332-344 (1999).

7. Green M. V., Seidel, J., Vaquero, J. J. et al., High resolution PET, SPECT and projection imaging in small animals. Comput Med Imaging Graph 25: 79-86 (2001).

8. MacDonald L. R., Patt, B. E., Iwanczyk, J. S. et al., Pinhole SPECT of mice using the LumaGEM gamma camera. IEEE Trans Nucl Sci 48: 830-836 (2001).

9. Wu M. C., Gao, D. W., Sievers, R. E. et al., Pinhole single-photon emission computed tomography for myocardial perfusion imaging of mice. J Am Coll Cardiol 42: 576-582 (2003).

10. Beekman F. J. and Vastenhouw, B., Design and simulation of a high-resolution stationary SPECT system for small animals. Phys Med Biol 49: 4579-4592 (2004).

11. Kimiaei S. and Larsson, S. A., Optimal design of planar-concave collimators for SPECT-an analytical approach. Phys Med Biol 43: 637-650 (1998).

12. Beekman F. J., Kamphuis, C., Hutton, B. F. et al., Half-fanbeam collimators combined with scanning point sources for simultaneous emission-transmission imaging. J Nucl Med 39: 1996-2003 (1998).

13. Formiconi A. R., Geometrical response of multihole collimators. Phys Med Biol 43: 3359-3379 (1998).

14. Webb S., Binnie, D. M., Flower, M. A. et al., Monte Carlo modelling of the performance of a rotating slit-collimator for improved planar gamma-camera imaging. Phys Med Biol 37: 1095-1108 (1992).

15. Zeng G. L. and Gagnon, D., CdZnTe strip detector SPECT imaging with a slit collimator. Phys Med Biol 49: 2257-2271 (2004).

16. Lodge M. A., Binnie, D. M., Flower, M. A. et al., The experimental evaluation of a prototype rotating slat collimator for planar gamma camera imaging. Phys Med Biol 40: 427-448 (1995).

17. Zeng G. L., Gagnon, D., Matthews, C. G. et al., Image reconstruction algorithm for a rotating slat collimator. Med Phys 29: 1406-1412 (2002).

18. Williams M. B., Goode, A. R., Galbis-Reig, V. et al, Performance of a PSPMT based detector for scintimammography. Phys Med Biol 45: 781-800 (2000).

Loudos G. K., Nikita, K. S., Giokaris, N. D. et al., A 3D high-resolution gamma camera for radiopharmaceutical studies with small animals. Appl Radiat Isot 58: 501-508 (2003).

Singh M. and Horne, C., Use of a germanium detector to optimize scatter correction in SPECT. J Nucl Med 28: 1853-1860 (1987).

Mauderli W. and Fitzgerald, L. T., Rotating laminar emission camera with Ge-detector: further developments. Med Phys 14: 1027-1031 (1987). Darambara D. G. and Todd-Pokropek, A., Solid state detectors in nuclear medicine. Q J Nucl Med 46: 3-7 (2002).

Abe A., Takahashi, N., Lee, J. et al., Performance evaluation of a hand-held, semiconductor (CdZnTe)-based gamma camera. Eur J Nucl Med Mol Imaging 30: 805-811 (2003).

Gagnon D., Zeng, G. L., Links, J. M. et al., ''Design considerations for a new solid-state gamma-camera: SOLSTICE'' Proc. IEEE Nuclear Science Symposium and Medical Imaging Conference, Oct. 4-10, San Diego, CA, Vol. 2; pp 1156-1160 (2001).

Humm J. L., Rosenfeld, A. and Del Guerra, A., From PET detectors to PET scanners. Eur J Nucl Med Mol Imaging 30: 1574-1597 (2003). Renker D., Properties of avalanche photodiodes for applications in high energy physics, astrophysics and medical imaging. Nucl Instr Meth A 486:164-169 (2002). Joram C., Large area hybrid photodiodes. Nucl Phys B 78: 407-415 (1999). Weilhammer P., Silicon-based HPD development: sensors and front ends. Nucl Instr Meth A 446: 289-298 (2000).

D'Ambrosio C. and Leutz, H., Hybrid photon detectors. Nucl Instr Meth A 501: 463-498 (2003).

Braem A., Chamizo Llatas, M., Chesi, E. et al., Feasibility of a novel design of high-resolution parallax-free Compton enhanced PET scanner dedicated to brain research. Phys Med Biol 49: 2547-2562 (2004).

Koral K. F., Zaidi, H. and Ljungberg, M., ''Medical imaging techniques for radiation dosimetry.'' in: Therapeutic applications of Monte Carlo calculations in nuclear medicine, edited by H Zaidi and G Sgouros Institute of Physics Publishing, Bristol, (2002), pp 55-83.

Singh M., An electronically collimated gamma camera for single photon emission computed tomography. Part I: Theoretical considerations and design criteria. Med Phys 10: 421-427 (1983).

Evans R. D., The atomic nucleus, McGraw-Hill, New York, (1955). Carlsson G. A., Carlsson, C. A., Berggren, K. F. et al., Calculation of scattering cross sections for increased accuracy in diagnostic radiology. I. Energy broadening of Compton-scattered photons. Med Phys 9: 868-879 (1982). Hirasawa M. and Tomitani, T., Effect of compensation for scattering angular uncertainty in analytical Compton camera reconstruction. Phys Med Biol 49: 2083-2093 (2004).

Todd R. W., Nightingale, J. and Everett, D., A proposed g-camera. Nature 25: 132 (1974).

Meier D., Czermak, A., Jalocha, P. et al., Silicon detector for a Compton camera in nuclear medical imaging. IEEE Trans Nucl Sci 49: 812-816 (2002). Martin J. B., Dogan, N., Gromley, J. et al., Imaging multi-energy gamma-ray fields with a Compton scatter camera. IEEE Trans Nucl Sci 41: 1019-1025 (1994).

39. LeBlanc J. W., Clinthorne, N. H., Hua, C.-H. et al., C-SPRINT: a prototype Compton camera system for low energy gamma ray imaging. IEEE Trans Nucl Sci 45: 943-949 (1998).

40. Du Y. F., He, Z., Knoll, G. F. et al., Evaluation of a Compton scattering camera using 3-D position sensitive CdZnTe detectors. Nucl Instr Meth A 457: 203-211 (2001).

41. Zhang L., Rogers, W. and Clinthorne, N., Potential of a Compton camera for high performance scintimammography. Phys Med Biol 49: 617-638 (2004).

42. Scannavini M., Speller, R., Royle, G. et al., A possible role for silicon microstrip detectors in nuclear medicine: Compton imaging of positron emitters. Nucl Instr Meth A 477: 514-520 (2002).

43. Basko R., Zeng, G. L. and Gullberg, G. T., Application of spherical harmonics to image reconstruction for the Compton camera. Phys Med Biol 43: 887-894 (1998).

44. Sauve A. C., Hero, A. O., III, Rogers, W. L. et al., 3D image reconstruction for a Compton SPECT camera model. IEEE Trans Nucl Sci 46: 2075-2084 (1999).

45. Brechner R. R. and Singh, M., Iterative reconstruction of electronically colli-mated SPECT images. IEEE Trans Nucl Sci 37: 1328-1332 (1990).

46. Meikle S. R. and Badawi, R. D., ''Quantitative techniques in Positron Emission Tomography.'' in: Positron Emission Tomography: Basic Science and Clinical Practice, edited by P E Valk, D L Bailey, D W Townsend et al. Springer, London, (2003), pp 115-146.

47. Phelps M. E., PET: the merging of biology and imaging into molecular imaging. J Nucl Med 41: 661-681 (2000).

48. Phelps M. E. and Cherry, S. R., The changing design of positron imaging systems. Clin. Pos. Imag. 1: 31-45 (1998).

49. Wienhard K., Schmand, M., Casey, M. E. et al., The ECAT HRRT: performance and first clinical application of the new high resolution research tomograph. IEEE Trans Nucl Sci 49: 104 -110 (2002).

50. Marsden P. K., Detector technology challenges for nuclear medicine and PET. Nucl Instr Meth A 513: 1-7 (2003).

51. van Eijk C. W. E., Inorganic scintillators in medical imaging. Phys Med Biol 47: R85-R106 (2002).

52. Moses W. W., Current trends in scintillator detectors and materials. Nucl Instr Meth A 487: 123-128 (2002).

53. Derenzo S. E., Weber, M. J., Bourret-Courchesne, E. et al., The quest for the ideal inorganic scintillator. Nucl Instr Meth A 505: 111-117 (2003).

54. Casey M. E. and Nutt, R., A Multicrystal two-dimensional BGO detector system for positron emission tomography. IEEE Trans Nucl Sci 33: 460-463 (1986).

55. Dahlbom M., MacDonald, L. R., Schmand, M. et al., A YSO/LSO phoswich array detector for single and coincidence photon imaging. IEEE Trans Nucl Sci 45: 1128-1132 (1998).

56. Jeavons A. P., Chandler, R. A. and Dettmar, C. A. R., A 3D HIDAC-PET camera with sub-millimetre resolution for imaging small animals. IEEE Trans Nucl Sci 46: 468-473 (1999).

57. Worstell W., Johnson, O., Kudrolli, H. et al., First results with high-resolution PET detector modules using wavelength-shifting fibers. IEEE Trans Nucl Sci 45: 2993-2999 (1998).

58. Bendriem B. and Townsend, D. W., The theory and practice of 3D PET, Kluwer Academic Publishers, The Netherlands, Dordrecht, (1998).

59. Strother S. C., Casey, M. E. and Hoffman, E. J., Measuring PET scanner sensitivity-relating count rates to image signal-to-noise ratios using noise equivalent counts. IEEE Trans Nucl Sci 37: 783-788 (1990).

60. NEMA, Standards Publication NU 2-2001. Performance measurements of positron emission tomographs. National Electrical Manufacturers Association, 2001.

61. Hirst G. L. and Balmain, A., Forty years of cancer modelling in the mouse. Eur J Cancer 40: 1974-1980 (2004).

62. Shmidt E. N. and Nitkin, A. Y., Pathology of mouse models of human lung cancer. Comp Med 54: 23-26 (2004).

63. Kwak I., Tsai, S. Y. and DeMayo, F. J., Genetically engineered mouse models for lung cancer. Annu Rev Physiol 66: 647-663 (2004).

64. Boivin G. P. and Groden, J., Mouse models of intestinal cancer. Comp Med 54: 15-18 (2004).

65. Janssen K. P., Murine models of colorectal cancer: studying the role of oncogenic K-ras. Cell Mol Life Sci 60: 495-506 (2003).

66. Dyer M. A., Mouse models of childhood cancer of the nervous system. J Clin Pathol 57: 561-576 (2004).

67. Mant C. and Cason, J., A human murine mammary tumour virus-like agent is an unconvincing aetiological agent for human breast cancer. Rev Med Virol 14: 169-177 (2004).

68. Gravekamp C., Sypniewska, R. and Hoflack, L., The usefulness of mouse breast tumor models for testing and optimization of breast cancer vaccines at old age. Mech Ageing Dev 125: 125-127 (2004).

69. Bursch W., Grasl-Kraupp, B., Wastl, U. et al., Role of apoptosis for mouse liver growth regulation and tumor promotion: comparative analysis of mice with high (C3H/He) and low (C57Bl/6J) cancer susceptibility. Toxicol Lett 149: 25-35 (2004).

70. Shappell S. B., Thomas, G. V., Roberts, R. L. et al., Prostate pathology of genetically engineered mice: definitions and classification. The consensus report from the Bar Harbor meeting of the Mouse Models of Human Cancer Consortium Prostate Pathology Committee. Cancer Res 64: 2270-2305 (2004).

71. Leach S. D., Mouse models of pancreatic cancer: the fur is finally flying! Cancer Cell 5: 7-11 (2004).

72. Arbeit J. M., Mouse models of cervical cancer. Comp Med 53: 256-258 (2003).

73. Bader M., Bohnemeier, H., Zollmann, F. S. et al., Transgenic animals in cardiovascular disease research Exp Physiol 85: 713-31 (2000).

74. Rao S. and Verkman, A. S., Analysis of organ physiology in transgenic mice. Am J Physiol Cell Physiol 279: C1-C18 (2000).

75. Carmeliet P. and Collen, D., Transgenic mouse models in angiogenesis and cardiovascular disease. J Pathol 190: 387-405 (2000).

76. James J. F., Hewett, T. E. and Robbins, J., Cardiac physiology in transgenic mice. Circ Res 82: 407-415 (1998).

77. Lavoie J. L., Bianco, R. A., Sakai, K. et al., Transgenic mice for studies of the renin-angiotensin system in hypertension. Acta Physiol Scand 181: 571-7 (2004).

78. Janssen B. J. and Smits, J. F., Autonomic control of blood pressure in mice: basic physiology and effects of genetic modification. Am J Physiol Regul Integr Comp Physiol 282: R1545-64 (2002).

79. Gros D., Dupays, L., Alcolea, S. et al., Genetically modified mice: tools to decode the functions of connexins in the heart-new models for cardiovascular research. Cardiovasc Res 62: 299-308 (2004).

80. Wessels A., Phelps, A., Trusk, T. C. et al., Mouse models for cardiac conduction system development. Novartis Found Symp 250: 44-59; discussion 59-67, 276-279 (2003).

81. Russo G. L. and Russo, M., Ins and outs of apoptosis in cardiovascular diseases Nutr Metab Cardiovasc Dis 13: 291-300 (2003).

82. Bernstein D., Exercise assessment of transgenic models of human cardiovascular disease. Physiol Genomics 13: 217-26 (2003).

83. Kopecky J., Flachs, P., Bardova, K. et al., Modulation of lipid metabolism by energy status of adipocytes: implications for insulin sensitivity. Ann N Y Acad Sci 967: 88-101 (2002).

84. Fruchart J. C. and Duriez, P., High density lipoproteins and coronary heart disease. Future prospects in gene therapy. Biochimie 80: 167-72 (1998).

85. Daugherty A., Mouse models of atherosclerosis. Am J Med Sci 323: 3-10 (2002).

86. Carmeliet P., Moons, L. and Collen, D., Mouse models of angiogenesis, arterial stenosis, atherosclerosis and hemostasis. Cardiovasc Res 39: 8-33 (1998).

87. Jacobs A. H., Li, H., Winkeler, A. et al., PET-based molecular imaging in neuroscience. Eur J Nucl Med Mol Imaging 30: 1051-1065 (2003).

88. Bernstein A. and Breitman, M., Genetic ablation in transgenic mice. Molecular Biol Med 6: 523-530 (1989).

89. Doetschman T., Interpretation of phenotype in genetically engineered mice. Lab Animal Sci 49: 137-143 (1999).

90. Hanahan D., Transgenic mice as probes into complex systems. Science 246: 1265-1275 (1989).

91. Liu Z., Stevenson, G. D., Barrett, H. H. et al., Imaging recognition of multi-drug resistance in human breast tumors using 99mTc-labeled monocationic agents and a high-resolution stationary SPECT system. Nucl Med Biol 31: 53-65 (2004).

92. Marsee D. K., Shen, D. H., MacDonald, L. R. et al., Imaging of metastatic pulmonary tumors following NIS gene transfer using single photon emission computed tomography. Cancer Gene Ther 11: 121-127 (2004).

93. Blankenberg F. G., Mandl, S., Cao, Y.-A. et al., Tumor imaging using a standardized radiolabeled adapter protein docked to vascular endothelial growth factor. J Nucl Med 45: 1373-1380 (2004).

94. Toyohara J., Hayashi, A., Sato, M. et al., Development of radioiodinated nu-cleoside analogs for imaging tissue proliferation: comparisons of six 5-iodonucleosides. Nucl Med Biol 30: 687-696 (2003).

95. Schechter N., Yang, D., Azhdarinia, A. et al., Assessment of epidermal growth factor receptor with 99mTc-ethylenedicysteine-C225 monoclonal antibody. Anticancer Drugs 14: 49-56 (2003).

96. Schottelius M., Wester, H., Reubi, J. et al., Improvement of pharmacokinetics of radioiodinated Tyr(3)-octreotide by conjugation with carbohydrates. Bioconjug Chem 13: 1021-1030 (2002).

97. Vanhove C., Lahoutte, T., Defrise, M. et al., Reproducibility of left ventricular volume and ejection fraction measurements in rat using pinhole gated SPECT. Eur J Nucl Med Mol Imaging 32: 211-220 (2005).

98. Popperl G., Tatsch, K., Ruzicka, E. et al, Comparison of alpha-dihydroergocryptine and levodopa monotherapy in Parkinson's disease: assessment of changes in DAT binding with [123I]IPT SPECT. J Neural Transm 111: 1041-1052 (2004).

99. Hashizume K., Tsuda, H., Hodozuka, A. et al., Clinical and experimental studies of epilepsy associated with focal cortical dysplasia. Psychiatry Clin Neurosci 58: S26-29 (2004).

100. Morris T. A., Marsh, J. J., Chiles, P. G. et al., Single photon emission computed tomography of pulmonary emboli and venous thrombi using anti-D-dimer. Am J Respir Crit Care Med 169: 987-993 (2004).

101. Saji H., Iida, Y., Kawashima, H. et al., In vivo imaging of brain dopaminergic neurotransmission system in small animals with high-resolution single photon emission computed tomography. Anal Sci 19: 67-71 (2003).

102. Acton P. D., Hou, C., Kung, M. P. et al., Occupancy of dopamine D2 receptors in the mouse brain measured using ultra-high-resolution single-photon emission tomography and [123]IBF. Eur J Nucl Med Mol Imaging 29: 1507-1515 (2002).

103. Grunder G., Siessmeier, T., Piel, M. et al., Quantification of D2-like dopamine receptors in the human brain with 18F-desmethoxyfallypride. J Nucl Med 44: 109-116 (2003).

104. Liu Z., Kastis, G. A., Stevenson, G. D. et al., Quantitative analysis of acute myocardial infarct in rat hearts with ischemia-reperfusion using a highresolution stationary SPECT system. J Nucl Med 43: 933-939 (2002).

105. Funk T., Sun, M. and Hasegawa, B. H., Radiation dose estimates in small animal SPECT and PET. Med Phys 31: 2680-2686 (2004).

106. Jaszczak R. J., Li, J., Wang, H. et al., Pinhole collimation for ultra highresolution, small field of view SPECT. Phys Med Biol 39: 425-437 (1994).

107. Wu M. C., Tang, H. R., O'Connell, J. W. et al, An ultra-high resolution ECG-gated myocardial imaging system for small animals. IEEE Tran Nucl Sci 46: 1199-1202 (1999).

108. Wu M. C., Hasegawa, B. H. and Dae, M. W., Performance evaluation of a pinhole SPECT system for myocardial perfusion imaging of mice. Med Phys 29: 2830-2839 (2002).

109. Ogawa K., Kawade, T., Nakamura, K. et al., Ultra high resolution pinhole SPECT for small animal study. IEEE Trans Nucl Sci 45: 3122-3126 (1998).

110. Weber D. A. and Ivanovic, M., Pinhole SPECT: ultra-high resolution imaging for small animal studies. J Nucl Med 36: 2287-2289 (1995).

111. Ishizu K., Mukai, T., Yonekura, Y. et al., Ultra-high resolution SPECT system using four pinhole collimators for small animal studies. J Nucl Med 36: 2282-2286 (1995).

112. Habraken J. B. A., de Bruin, K., Shehata, M. et al., Evaluation of highresolution pinhole SPECT using a small rotating animal. J Nucl Med 42: 1863-1869 (2001).

113. Schellingerhout D., Accorsi, R., Mahmood, U. et al., Coded aperture nuclear scintigraphy: a novel small animal imaging technique. Mol Imaging 1: 344-353 (2002).

114. Metzler S. D., Bowsher, J. E., Smith, M. F. et al., Analytic determination of pinhole collimator sensitivity with penetration. IEEE Trans Med Imaging 20: 730-741 (2001).

115. Accorsi R. and Metzler, S. D., Analytic determination of the resolution-equivalent effective diameter of a pinhole collimator. IEEE Trans Med Imaging 23: 750-763 (2004).

116. Williams M. B., Zhang, G., More, M. J. et al, ''Integrated CT-SPECT system for small animal imaging'' Proc SPIE, Vol. 4142; pp 265-274 (2000).

117. Meikle S. R., Kench, P., Weisenberger, A. G. et al., A prototype coded aperture detector for small animal SPECT. IEEE Trans Nucl Sci 49: 2167-2171 (2002).

118. Weisenberger A. G., Bradley, E. L., Majewski, S. et al., Development of a novel radiation imaging detector system for in vivo gene mapping in small animals. IEEE Trans Nucl Sci 45: 1743-1749 (1998).

119. Weisenberger A. G., Wojcik, R., Bradley, E. L. et al., SPECT-CT system for small animal imaging. IEEE Trans Nucl Sci 50: 74-79 (2003).

120. Welsh R. E., Brewer, P., Bradley, E. L. et al., ''An economical dual-modality small animal imaging system with application to studies of diabetes'' IEEE Nuclear Science Symposium and Medical Imaging Conference Record, Vol. 3; pp 1845-1848 (2002).

121. MacDonald L. R., Iwanczyk, J. S., Patt, B. E. et al., ''Development of new high resolution detectors for small animal SPECT imaging'' IEEE Nuclear Science Symposium and Medical Imaging Conference Record, Vol. 3; pp 21/75 (2002).

122. Beekman F. J., McElroy, D. P., Berger, F. et al., Towards in vivo nuclear microscopy: iodine-125 imaging in mice using micro-pinholes. Eur J Nucl Med Mol Imaging 29: 933-938 (2002).

123. Furenlid L. R., Wilson, D. W., Chen, Y.-c. et al., FastSPECT II: a second-generation high-resolution dynamic SPECT imager. IEEE Trans Nucl Sci 51: 631-635 (2004).

124. Acton P. D. and Kung, H. F., Small animal imaging with high resolution single photon emission tomography. Nucl Med Biol 30: 889-895 (2003).

125. Schramm N. U., Ebel, G., Engeland, U. et al., High-resolution SPECT using multipinhole collimation. IEEE Trans Nucl Sci 50: 315-320 (2003).

126. Cherry S. R., Shao, Y., Silverman, R. W. et al., MicroPET: a high resolution PET scanner for imaging small animals. IEEE Trans Nucl Sci 44: 1161-1166 (1997).

127. Tornai M. P., Jaszczak, R. J., Turkington, T. G. et al., Small-animal PET: advent of anew era of PET research. J Nucl Med 40: 1176-1179 (1999).

128. Chatziioannou A. F., Molecular imaging of small animals with dedicated PET tomographs. Eur J Nucl Med Mol Imaging 29: 98-114 (2002).

129. Del Guerra A. and Belcari, N., Advances in animal PET scanners. Q J Nucl Med 46: 35-47 (2002).

130. Shao Y., Cherry, S. R. and Chatziioannou, A. F., Design and development of 1 mm resolution PET detectors with position-sensitive PMTs. NuclInstr Meth A 477: 486-490 (2002).

131. Schelbert H. R., Inubushi, M. and Ross, R. S., PET imaging in small animals. J Nucl Cardiol 10: 513-520 (2003).

132. Tai Y.-C., Chatziioannou, A., Yang, Y. et al., MicroPET II: design, development and initial performance of an improved microPET scanner for small-animal imaging. Phys Med Biol 48: 1519-1537 (2003).

133. Yang Y., Tai, Y.-C., Siegel, S. et al., Optimization and performance evaluation of the microPET II scanner for in vivo small-animal imaging. Phys Med Biol 49: 2527-2545 (2004).

134. Lee K., Kinahan, P. E., Miyaoka, R. S. et al., Impact of system design parameters on image figures of merit for a mouse PET scanner. IEEE Trans Nucl Sci 51: 27-33 (2004).

135. Miyaoka R. S., Dynamic high resolution positron emission imaging of rats. Biomed Sci Instrum 27: 35-42 (1991).

136. Miyaoka R. S., Kohlmyer, S. G. and Lewellen, T. K., Performance characteristics of micro crystal element (MiCE) detectors. IEEE Trans Nucl Sci 48: 1403-1407 (2001).

137. Tai Y., Chatziioannou, A., Siegel, S. et al., Performance evaluation of the microPET P4: a PET system dedicated to animal imaging. Phys Med Biol 46: 1845-1862 (2001).

138. Chatziioannou A., Tai, Y. C., Doshi, N. et al., Detector development for microPET II: a 1 microl resolution PET scanner for small animal imaging. Phys Med Biol 46: 2899-2910 (2001).

139. Weber S. and Bauer, A., Small animal PET: aspects of performance assessment. Eur J Nucl Med Mol Imaging 31: 1545-1555 (2004).

140. Bergman S., The need for independent physics advice. Eur J Nucl Med Mol Imaging 30: 491-493 (2003).

141. Nahmias C., Nutt, R., Hichwa, R. D. et al., PET tomograph designed for five minute routine whole body studies. [abstract] J Nucl Med 43: 11P (2002).

142. Townsend D. W., Carney, J. P. J., Yap, J. T. et al., PET/CT today and tomorrow. J Nucl Med 45: 4S-14 (2004).

Delicious Diabetic Recipes

Delicious Diabetic Recipes

This brilliant guide will teach you how to cook all those delicious recipes for people who have diabetes.

Get My Free Ebook


Post a comment