The real-time PCR systems brought significant advantages to clinical microbiology. Real-time PCR applications are more sensitive, time and cost effective for both detection and quantification of the pathogens and for identification of the specific genes or mutations in microorganisms (Pahl et al., 1999; Maeda et al., 2003; Boutaga et al., 2003; Saukkoriipi et al., 2004; Sloan et al., 2004; Huletsky et al., 2004). Real-time PCR applications allow fast confirmations of conventional detection and serology results, correction of non-specific serological false positive results, identification of the genes that encode virulence factors or antimicrobial resistance, recognition of the mutations of genes that are associated with antimicrobial resistance. Thus, it may be possible to commence appropriate antibiotic therapy sooner, or modify the therapy earlier in the presence of a molecular identification from a culture-negative or serology-negative specimen, or quantitative monitoring of the pathogen during therapy (Millar and Moore, 2004). Although not yet perfect, they have the potential to revolutionize the way in which diagnostic tests are performed.

0 0

Post a comment