Introduction

Hairy roots are formed by genetic transformation of plant cells using Agro-bacterium rhizogenes. Integration into the plant genome of T-DNA from the bacterial root-inducing (Ri) plasmid results in differentiation and growth of hairy roots at the infection site. Hairy roots can be excised, cleared of excess bacteria using antibiotics, and grown indefinitely in vitro by subculture of root tips in liquid medium. Practical techniques for initiation, culture, genetic manipulation, and molecular analysis of hairy roots are summarized in Ham-ill and Lidgett (1). Hundreds of plant species have been successfully transformed to hairy roots; lists of amenable species are provided in several publications (2-5).

For 15-20 years, hairy roots have been applied in a wide range of fundamental studies of plant biochemistry, molecular biology, and physiology, as well as for agricultural, horticultural, and large-scale tissue culture purposes. Several recent reviews describe current and potential uses of hairy root cultures in research and industry (4—8). The aim of this chapter is to outline some of the emerging and rapidly developing areas of hairy root research and application. The properties and culture characteristics of hairy roots relevant to their scientific and commercial exploitation are summarized, and selected topics associated with organ coculture, foreign protein production, and the use of hairy roots in studies of phytoremediation and phytomining are reviewed.

Was this article helpful?

0 0
Detox Diet Basics

Detox Diet Basics

Our internal organs, the colon, liver and intestines, help our bodies eliminate toxic and harmful  matter from our bloodstreams and tissues. Often, our systems become overloaded with waste. The very air we breathe, and all of its pollutants, build up in our bodies. Today’s over processed foods and environmental pollutants can easily overwhelm our delicate systems and cause toxic matter to build up in our bodies.

Get My Free Ebook


Post a comment