The sensation of odor is triggered by highly complex mixtures of small, rather hydrophobic molecules from many chemical classes that occur in trace concentrations and are detected by receptor cells of the olfactory epithelium inside the nasal cavity. The nonvolatile chemical messengers of the sense of taste interact with reporters located on the tongue and impart four basic impressions only: sweet, sour, salty, and bitter. In scientific Anglo-Saxon usage, all sensory (odor, taste, color and texture) attributes of food have been classed under the general term "flavor." Fragrances, as used in perfumes, cosmetics, and toiletries, are distinguished from volatile flavors mainly by the different range of application.

According to European food legislation, aroma compounds derived from a natural source by physical means are classified as "natural"; their synthetic counterparts are "nature-identical," and compounds without a natural prototype are "artificial." Most of the natural flavors currently processed by the flavor and fragrance industry are originally derived from plant sources. Naturalness of flavors started to become increasingly important particularly for the food market about two decades ago. Today, the U.S. demand for natural flavors accounts for about 70-80% of all flavor-added products. Europe also favors natural flavors, and a widespread growth in Asia over the next few years was predicted (1). This rising demand cannot be covered by means of traditional flavor recovery processes, which mainly revert to extraction and distillation of field-grown plant material (2). Thus, this gap of supply represents one major push for plant biotechnology for the production of natural flavors. Although the specific fields of research overlap and interact to a wide extent, an attempt to structure plant aroma biotechnology is presented in Fig. 1.

Recombinant DNA technology, although discussed controversially in public, raises multifaceted expectations. Since the introduction of the first genetically engineered whole food, the FLAVRSAVRâ„¢ tomato, in 1994, recombinant DNA technology has developed rapidly. The majority of genetic engineering imparted pest or pesticide resistance to the plant, whereas improved flavor quality has been aspired to only recently.

Notwithstanding the long breeding history of aromatic fruit, we still lack essential information on the molecular, cellular, and physiological events that control the processes of flavor genesis. With the help of recombinant DNA technology, the genetic information responsible for flavor formation in plants can be characterized and isolated (e.g., Ref. 3). Afterward it may be either transferred into a suitable microbial host strain or used specifically to modify food plants. The understanding of these fundamental biochemical principles is indispensable for the development of competitive

Was this article helpful?

0 0
Natural Detox

Natural Detox

Are you looking for a full total body detox? If so, then you might want to try a 10 day detox or some refer to it as the 2-week detox. A 10-day detox is a full body detox that usually means taking several different steps to reach your total body transformation. It might involve a change in diet, exercise and more.

Get My Free Ebook

Post a comment