References

1. BL Johnson, CT DeRosa. Chemical mixtures released from hazardous waste sites—implications for health risk assessment. Toxicology 105:145-156, 1995.

2. RA Lemen, JS Lee, JK Wagoner, HP Bleier. Cancer mortality among cadmium production workers. Ann NY Acad Sci 271:273-279, 1976.

3. U Heinrich, L Peters, H Ernst, S Rittinghausen. Investigation of the carcinogenic effects of various cadmium compounds after inhalation exposure in hamsters and mice. Exp Pathol 37:253-258, 1989.

4. SD Cunningham, D Ow. Promises and prospects of phytoremediation. Plant Physiol 110:715-719, 1996.

5. AS Moffat. Plants proving their worth in toxic metal cleanup. Science 269: 302-303, 1995.

6. DR Parker, WA Nervell, RL Chaney. GEOCHEM-PC: a chemical speciation program for IBM and compatible personal computers. In: RH Loeppert, AP Schwab, S Goldberg, eds. Soil Chemical Equilibrium and Reaction Models. Madison, WI: American Society of Agronomy, Soil Science Society of America, 1994, pp 253-269.

7. V Dushenkov, P Kumar, H Motto, I Raskin. Rhizofiltration—the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 29:12391245, 1995.

8. CWN Anderson, RR Brooks, RB Stewart, R Simcock. Harvesting a crop of gold in plants. Nature 395:553-554, 1998.

9. T Gura. New genes boost rice nutrients. Science 285:994-995, 1999.

10. ML Guerinot, D Eide. Zeroing in on zinc uptake in yeast and plants. Curr Opin Plant Biol 2:244-249, 1999.

11. E Delhaize, PR Ryan. Aluminum toxicity and tolerance in plants. Plant Physiol 107:315-321, 1995.

12. E Nieboer, DHS Richardson. Replacement of the nondescript term "heavy metals" by a biologically and chemically significant classification of metal ions. Environ Pollut Ser B 1:3-26, 1980.

13. AJM Baker, RR Brooks. Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:81-126.

14. S Clemens, EJ Kim, D Neumann, JI Schroeder. Tolerance to toxic metals by a family of phytochelatin synthases from plants and fungi. EMBO J 18:33253333, 1999.

15. U Kramer, JD Cotter-Howells, JM Charnock, AJM Baker, AC Smith. Free histidine as a metal chelator in plants that accumulate nickel. Nature 379: 635-638, 1996.

16. TC Fox, ML Guerinot. Molecular biology of cation transport in plants. Annu Rev Plant Physiol Plant Mol Biol 49:669-696, 1998.

17. S Clemens, DM Antosiewicz, JM Ward, DP Schachtman, JI Schroeder. The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast. Proc Natl Acad Sei USA 95:12043-12048, 1998.

18. T Arazi, R Sunkar, B Kaplan, H Fromm. A tobacco plasma membrane cal-modulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J 20:171-182, 1999.

19. S Thomine, R Wang, J Ward, N Crawford, JI Schroeder. Cadmium and iron transport by members of a plant metal, transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sei USA 97:4991-4996, 2000.

20. TD Rae, PJ Schmidt, RA Pufahl, VC Culotta, TV O'Halloran. Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284:805-808, 1999.

21. N Kondo, K Imai, M Isobe, T Goto, A Murasugi, C Wada-Nakagawa, Y Hayashi. Cadystin A and B, major unit peptides comprising cadmium binding peptides induced in a fission yeast—separation, revision of structures and synthesis. Tetrahedron Lett 25:3869-3872, 1984.

22. E Grill, E-L Winnacker, MH Zenk. Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230:674-676, 1985.

23. PJ Jackson, CJ Unkefer, JA Doolen, K Watt, NJ Robinson. Poly(gamma-glutamylcysteinyl)glycine: its role in cadmium resistance in plant cells. Proc Natl Acad Sei USA 84:6619-6623, 1987.

24. WE Rauser. Phytochelatins and related peptides. Structure, biosynthesis, and function. Plant Physiol 109:1141-1149, 1995.

25. J Thumann, E Grill, E-L Winnacker, MH Zenk. Reactivation of metal-

requiring apoenzymes by phytoehelatin-metal complexes. FEBS Lett 284:6669, 1991.

26. R Howden, PB Goldsbrough, CR Andersen, CS Cobbett. Cadmium-sensitive, cadi mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol 107:1059-1066, 1995.

27. SB Ha, AP Smith, R Howden, WM Dietrich, S Bugg, MJ O'Connell, PB Goldsbrough, CS Cobbett. Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe. Plant Cell 11:1153-1163, 1999.

28. O Vatamaniuk, S Man, Y Lu, P Rea. AtPCSl, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution. Proc Natl Acad Sci USA 96:7110-7115, 1999.

29. ME Schmoger, M Oven, E Grill. Detoxification of arsenic by phytochelatins in plants. Plant Physiol 122:793-801, 2000.

30. I Pickering, R Prince, M George, R Smith, G George, DE Salt. Reduction and coordination of arsenic in indian mustard. Plant Physiol 122:1171-1178, 2000.

31. W Gekeler, E Grill, E-L Winnacker, MH Zenk. Survey of the plant kingdom for the ability to bind heavy metals through phytochelatins. Z Naturforsch 44c:361-369, 1989.

32. YL Zhu, EA Pilon-Smits, AS Tarun, SU Weber, L Jouanin, N Terry. Cadmium tolerance and accumulation in indian mustard is enhanced by overex-pressing gamma-glutamylcysteine synthetase. Plant Physiol 121:1169-1178, 1999.

33. YL Zhu, EA Pilon-Smits, L Jouanin, N Terry. Overexpression of glutathione synthetase in indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119:73-80, 1999.

34. DH Hamer. Metallothionein. Annu Rev Biochem 55:913-951, 1986.

35. LT Jensen, W Howard, J Strain, DR Winge, V Culotta. Enhanced effectiveness of copper ion buffering by CUP1 metallothionein compared with CRS5 metallothionein in Saccharomyces cerevisiae. J Biol Chem 271:18514-18519, 1996.

36. W Yu, V Santhanagopalan, AK Sewell, LT Jensen, DR Winge. Dominance of metallothionein in metal ion buffering in yeast capable of synthesis of (gamma EC)nG isopeptides. J Biol Chem 269:21010-21015, 1994.

37. BA Masters, EJ Kelly, CJ Quaife, RL Brinster, RD Palmiter. Targeted disruption of metallothionein I and II genes increases sensitivity to cadmium. Proc Natl Acad Sci USA 91:584-588, 1994.

38. RD Palmiter. The elusive function of metallothioneins. Proc Natl Acad Sci USA 95:8428-8430, 1998.

39. WE Rauser. Structure and function of metal chelators produced by plants. Cell Biochem Biophys 31:19-48, 1999.

40. J Zhou, PB Goldsbrough. Functional homologs of fungal metallothionein genes from Arabidopsis. Plant Cell 6:875-884, 1994.

41. NJ Robinson, J Wilson, J Turner. Expression of the type 2 metallothionein-like gene MT2 from Arabidopsis thaliana in Zn2+-metallothionein-deficient

Synechococcus PCC 7942: putative role for MT2 in Zn2+ metabolism. Plant Mol Biol 30:1169-1179, 1996.

42. A Murphy, L Taiz. Comparison of metallothionein gene expression and nonprotein thiols in ten Arabidopsis ecotypes. Correlation with copper tolerance. Plant Physiol 109:945-954, 1995.

43. DD Lefebvre, BL Miki, J-F Laliberte. Mammalian metallothionein functions in plants. Biotechnology 5:1053-1056, 1987.

44. A Pan, M Yang, F Tie, L Li, Z Chen, B Ru. Expression of mouse metallo-thionein-I gene confers cadmium resistance in transgenic tobacco plants. Plant Mol Biol 24:341-351, 1994.

45. T Elmayan, M Tepfer. Synthesis of a bifunctional metallothionein/beta-glu-curonidase fusion protein in transgenic tobacco plants as a means of reducing leaf cadmium levels. Plant J 6:433-440, 1994.

46. MC Suh, D Choi, JR Liu. Cadmium resistance in transgenic tobacco plants expressing the Nicotiana glutinosa L. metallothionein-like gene. Mol Cells 8: 678-684, 1998.

48. A Dancis, DS Yuan, D Haile, C Askwith, D Eide, C Moehle, J Kaplan, RD Klausner. Molecular characterization of a copper transport protein in S. cerevisiae: an unexpected role for copper in iron transport. Cell 76:393-402, 1994.

49. RA Pufahl, CP Singer, KL Peariso, SJ Lin, PJ Schmidt, CJ Fahrni, VC Culotta, JE Penner-Hahn, TV O'Halloran. Metal ion chaperone function of the soluble Cu(I) receptor ATX1. Science 278:853-856, 1997.

50. I Hamza, M Schaefer, LW Klomp, JD Gitlin. Interaction of the copper chaperone HAH 1 with the Wilson disease protein is essential for copper homeostasis. Proc Natl Acad Sei USA 96:13363-13368, 1999.

51. DM Glerum, A Shtanko, A Tzagoloff. Characterization of COX] 7, a yeast gene involved in copper metabolism and assembly of cytochrome oxidase. J Biol Chem 271:14504-14509, 1996.

52. VC Culotta, LW Klomp, J Strain, RL Casareno, B Krems, JD Gitlin. The copper chaperone for superoxide dismutase. J Biol Chem 272:23469-23472, 1997.

53. E Himelblau, H Mira, SJ Lin, VC Culotta, L Penarrubia, RM Amasino. Identification of a functional homolog of the yeast copper homeostasis gene ATX I from Arabidopsis. Plant Physiol 117:1227-1234, 1998.

54. T Hirayama, JJ Kieber, N Hirayama, M Kogan, P Guzman, S Nourizadeh, JM Alonso, WP Dailey, A Dancis, JR Ecker. RESPONSIVE-TO-ANTAGO-NIST1, a Menkes/Wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis. Cell 97:383-393, 1999.

55. J Valentine, E Gralla. Delivering copper inside yeast and human cells. Science 278:817-818, 1997.

56. F Goto, T Yoshihara, N Shigemoto, S Toki, F Takaiwa. Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 17:282-286, 1997.

57. MW Persans, X Yan, JM Patnoe, U Krämer, DE Salt. Molecular dissection of the role of histidine in nickel hyperaccumulation in Thlaspi goesingense. Plant Physiol 121:1117-1126, 1999.

58. U Krämer, RD Smith, WW Wenzel, I Raskin, DE Salt. The role of metal transport and tolerance in nickel hyperaccumulation by Thlaspi goesingense Halacsy. Plant Physiol 115:1641-1650, 1997.

59. SC Miyasaka, JG Buta, RK Howell, CD Foy. Mechanism of aluminum tolerance in snapbeans: root exudation of citric acid. Plant Physiol 96:737-743, 1991.

60. E Delhaize, S Craig, CD Beaton, RJ Bennet, VC Jagadish, PJ Randall. Aluminum tolerance in wheat (Triticum aestivum L.). I. Uptake and distribution of aluminum in root apices. Plant Physiol 103:685-693, 1993.

61. E Delhaize, PR Ryan, PJ Randall. Aluminum tolerance in wheat (Triticum aestivum L.). II. Aluminum-stimulated excretion of malic acid from root apices. Plant Physiol 103:685-693, 1993.

62. JM de la Fuente, V Ramirez-Rodriguez, JL Cabrera-Ponce, L Herrera-Estrella. Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science 276:1566-1568, 1997.

63. UW Stephan, G Scholz. Nicotianamine: mediator of transport of iron and heavy metals in the phloem? Physiol Plant 88:522-527, 1993.

64. HQ Ling, G Koch, H Bäumlein, MW Ganal. Map-based cloning of chloro-nerva, a gene involved in iron uptake of higher plants encoding nicotianamine synthase. Proc Natl Acad Sci USA 96:7098-7103, 1999.

65. K Higuchi, K Suzuki, H Nakanishi, H Yamaguchi, NK Nishizawa, S Mori. Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol 119:471-480, 1999.

66. DF Ortiz, L Kreppel, DM Speiser, G Scheel, G McDonald, DW Ow. Heavy metal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter. EMBO J 11:3491-3499, 1992.

67. DF Ortiz, T Ruscitti, KF McCue, DW Ow. Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. J Biol Chem 270:4721-4728, 1995.

68. PA Rea, ZS Li, YP Lu, YM Drozdowicz, E Martinoia. From vacuolar GS-X pumps to multispecific ABC transporters. Annu Rev Plant Physiol Plant Mol Biol 49:727-760, 1998.

69. MS Szczypka, JA Wemmie, WS Moye-Rowley, DJ Thiele. A yeast metal resistance protein similar to human cystic fibrosis transmembrane conductance regulator (CFTR) and multidrug resistance-associated protein. J Biol Chem 269:22853-22857, 1994.

70. ZS Li, YP Lu, RG Zhen, M Szczypka, DJ Thiele, PA Rea. A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCFl-cat-alyzed transport of bis(glutathionato)cadmium. Proc Natl Acad Sci USA 94: 42-47, 1997.

71. M Ghosh, J Shen, BP Rosen. Pathways of As(III) detoxification in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 96:5001-5006, 1999.

72. DH Nies. The cobalt, zinc, and cadmium efflux system CzcABC from Al-

caligenes eutrophus functions as a cation-proton antiporter in Escherichia coli. J Bacteriol 177:2707-2712, 1995.

73. IT Paulsen, MH Saier Jr. A novel family of ubiquitous heavy metal ion transport proteins. J Membr Biol 156:99-103, 1997.

74. BJ van der Zaal, LW Neuteboom, JE Pinas, AN Chardonnens, H Schat, JA Verkleij, PJ Hooykaas. Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol 119:1047-1056, 1999.

75. DS Conklin, JA McMaster, MR Culbertson, C Kung. COT1, a gene involved in cobalt accumulation in Saccharomyces cerevisiae. Mol Cell Biol 12:36783688, 1992.

76. A Kamizono, M Nishizawa, Y Teranishi, K Murata, A Kimura. Identification of a gene conferring resistance to zinc and cadmium ions in the yeast Saccharomyces cerevisiae. Mol Gen Genet 219:161-167, 1989.

77. L Li, J Kaplan. Defects in the yeast high affinity iron transport system result in increased metal sensitivity because of the increased expression of transporters with a broad transition metal specificity. J Biol Chem 273:2218122187, 1998.

78. RD Palmiter, SD Findley. Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc. EMBO J 14:639-649,

Was this article helpful?

0 0
Natural Detox

Natural Detox

Are you looking for a full total body detox? If so, then you might want to try a 10 day detox or some refer to it as the 2-week detox. A 10-day detox is a full body detox that usually means taking several different steps to reach your total body transformation. It might involve a change in diet, exercise and more.

Get My Free Ebook


Post a comment