References

1. BL Johnson, CT DeRosa. Chemical mixtures released from hazardous waste sites—implications for health risk assessment. Toxicology 105:145-156, 1995.

2. RA Lemen, JS Lee, JK Wagoner, HP Bleier. Cancer mortality among cadmium production workers. Ann NY Acad Sci 271:273-279, 1976.

3. U Heinrich, L Peters, H Ernst, S Rittinghausen. Investigation of the carcinogenic effects of various cadmium compounds after inhalation exposure in hamsters and mice. Exp Pathol 37:253-258, 1989.

4. SD Cunningham, D Ow. Promises and prospects of phytoremediation. Plant Physiol 110:715-719, 1996.

5. AS Moffat. Plants proving their worth in toxic metal cleanup. Science 269: 302-303, 1995.

6. DR Parker, WA Nervell, RL Chaney. GEOCHEM-PC: a chemical speciation program for IBM and compatible personal computers. In: RH Loeppert, AP Schwab, S Goldberg, eds. Soil Chemical Equilibrium and Reaction Models. Madison, WI: American Society of Agronomy, Soil Science Society of America, 1994, pp 253-269.

7. V Dushenkov, P Kumar, H Motto, I Raskin. Rhizofiltration—the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 29:12391245, 1995.

8. CWN Anderson, RR Brooks, RB Stewart, R Simcock. Harvesting a crop of gold in plants. Nature 395:553-554, 1998.

9. T Gura. New genes boost rice nutrients. Science 285:994-995, 1999.

10. ML Guerinot, D Eide. Zeroing in on zinc uptake in yeast and plants. Curr Opin Plant Biol 2:244-249, 1999.

11. E Delhaize, PR Ryan. Aluminum toxicity and tolerance in plants. Plant Physiol 107:315-321, 1995.

12. E Nieboer, DHS Richardson. Replacement of the nondescript term "heavy metals" by a biologically and chemically significant classification of metal ions. Environ Pollut Ser B 1:3-26, 1980.

13. AJM Baker, RR Brooks. Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:81-126.

14. S Clemens, EJ Kim, D Neumann, JI Schroeder. Tolerance to toxic metals by a family of phytochelatin synthases from plants and fungi. EMBO J 18:33253333, 1999.

15. U Kramer, JD Cotter-Howells, JM Charnock, AJM Baker, AC Smith. Free histidine as a metal chelator in plants that accumulate nickel. Nature 379: 635-638, 1996.

16. TC Fox, ML Guerinot. Molecular biology of cation transport in plants. Annu Rev Plant Physiol Plant Mol Biol 49:669-696, 1998.

17. S Clemens, DM Antosiewicz, JM Ward, DP Schachtman, JI Schroeder. The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast. Proc Natl Acad Sei USA 95:12043-12048, 1998.

18. T Arazi, R Sunkar, B Kaplan, H Fromm. A tobacco plasma membrane cal-modulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J 20:171-182, 1999.

19. S Thomine, R Wang, J Ward, N Crawford, JI Schroeder. Cadmium and iron transport by members of a plant metal, transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sei USA 97:4991-4996, 2000.

20. TD Rae, PJ Schmidt, RA Pufahl, VC Culotta, TV O'Halloran. Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284:805-808, 1999.

21. N Kondo, K Imai, M Isobe, T Goto, A Murasugi, C Wada-Nakagawa, Y Hayashi. Cadystin A and B, major unit peptides comprising cadmium binding peptides induced in a fission yeast—separation, revision of structures and synthesis. Tetrahedron Lett 25:3869-3872, 1984.

22. E Grill, E-L Winnacker, MH Zenk. Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230:674-676, 1985.

23. PJ Jackson, CJ Unkefer, JA Doolen, K Watt, NJ Robinson. Poly(gamma-glutamylcysteinyl)glycine: its role in cadmium resistance in plant cells. Proc Natl Acad Sei USA 84:6619-6623, 1987.

24. WE Rauser. Phytochelatins and related peptides. Structure, biosynthesis, and function. Plant Physiol 109:1141-1149, 1995.

25. J Thumann, E Grill, E-L Winnacker, MH Zenk. Reactivation of metal-

requiring apoenzymes by phytoehelatin-metal complexes. FEBS Lett 284:6669, 1991.

26. R Howden, PB Goldsbrough, CR Andersen, CS Cobbett. Cadmium-sensitive, cadi mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol 107:1059-1066, 1995.

27. SB Ha, AP Smith, R Howden, WM Dietrich, S Bugg, MJ O'Connell, PB Goldsbrough, CS Cobbett. Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe. Plant Cell 11:1153-1163, 1999.

28. O Vatamaniuk, S Man, Y Lu, P Rea. AtPCSl, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution. Proc Natl Acad Sci USA 96:7110-7115, 1999.

29. ME Schmoger, M Oven, E Grill. Detoxification of arsenic by phytochelatins in plants. Plant Physiol 122:793-801, 2000.

30. I Pickering, R Prince, M George, R Smith, G George, DE Salt. Reduction and coordination of arsenic in indian mustard. Plant Physiol 122:1171-1178, 2000.

31. W Gekeler, E Grill, E-L Winnacker, MH Zenk. Survey of the plant kingdom for the ability to bind heavy metals through phytochelatins. Z Naturforsch 44c:361-369, 1989.

32. YL Zhu, EA Pilon-Smits, AS Tarun, SU Weber, L Jouanin, N Terry. Cadmium tolerance and accumulation in indian mustard is enhanced by overex-pressing gamma-glutamylcysteine synthetase. Plant Physiol 121:1169-1178, 1999.

33. YL Zhu, EA Pilon-Smits, L Jouanin, N Terry. Overexpression of glutathione synthetase in indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119:73-80, 1999.

34. DH Hamer. Metallothionein. Annu Rev Biochem 55:913-951, 1986.

35. LT Jensen, W Howard, J Strain, DR Winge, V Culotta. Enhanced effectiveness of copper ion buffering by CUP1 metallothionein compared with CRS5 metallothionein in Saccharomyces cerevisiae. J Biol Chem 271:18514-18519, 1996.

36. W Yu, V Santhanagopalan, AK Sewell, LT Jensen, DR Winge. Dominance of metallothionein in metal ion buffering in yeast capable of synthesis of (gamma EC)nG isopeptides. J Biol Chem 269:21010-21015, 1994.

37. BA Masters, EJ Kelly, CJ Quaife, RL Brinster, RD Palmiter. Targeted disruption of metallothionein I and II genes increases sensitivity to cadmium. Proc Natl Acad Sci USA 91:584-588, 1994.

38. RD Palmiter. The elusive function of metallothioneins. Proc Natl Acad Sci USA 95:8428-8430, 1998.

39. WE Rauser. Structure and function of metal chelators produced by plants. Cell Biochem Biophys 31:19-48, 1999.

40. J Zhou, PB Goldsbrough. Functional homologs of fungal metallothionein genes from Arabidopsis. Plant Cell 6:875-884, 1994.

41. NJ Robinson, J Wilson, J Turner. Expression of the type 2 metallothionein-like gene MT2 from Arabidopsis thaliana in Zn2+-metallothionein-deficient

Synechococcus PCC 7942: putative role for MT2 in Zn2+ metabolism. Plant Mol Biol 30:1169-1179, 1996.

42. A Murphy, L Taiz. Comparison of metallothionein gene expression and nonprotein thiols in ten Arabidopsis ecotypes. Correlation with copper tolerance. Plant Physiol 109:945-954, 1995.

43. DD Lefebvre, BL Miki, J-F Laliberte. Mammalian metallothionein functions in plants. Biotechnology 5:1053-1056, 1987.

44. A Pan, M Yang, F Tie, L Li, Z Chen, B Ru. Expression of mouse metallo-thionein-I gene confers cadmium resistance in transgenic tobacco plants. Plant Mol Biol 24:341-351, 1994.

45. T Elmayan, M Tepfer. Synthesis of a bifunctional metallothionein/beta-glu-curonidase fusion protein in transgenic tobacco plants as a means of reducing leaf cadmium levels. Plant J 6:433-440, 1994.

46. MC Suh, D Choi, JR Liu. Cadmium resistance in transgenic tobacco plants expressing the Nicotiana glutinosa L. metallothionein-like gene. Mol Cells 8: 678-684, 1998.

48. A Dancis, DS Yuan, D Haile, C Askwith, D Eide, C Moehle, J Kaplan, RD Klausner. Molecular characterization of a copper transport protein in S. cerevisiae: an unexpected role for copper in iron transport. Cell 76:393-402, 1994.

49. RA Pufahl, CP Singer, KL Peariso, SJ Lin, PJ Schmidt, CJ Fahrni, VC Culotta, JE Penner-Hahn, TV O'Halloran. Metal ion chaperone function of the soluble Cu(I) receptor ATX1. Science 278:853-856, 1997.

50. I Hamza, M Schaefer, LW Klomp, JD Gitlin. Interaction of the copper chaperone HAH 1 with the Wilson disease protein is essential for copper homeostasis. Proc Natl Acad Sei USA 96:13363-13368, 1999.

51. DM Glerum, A Shtanko, A Tzagoloff. Characterization of COX] 7, a yeast gene involved in copper metabolism and assembly of cytochrome oxidase. J Biol Chem 271:14504-14509, 1996.

52. VC Culotta, LW Klomp, J Strain, RL Casareno, B Krems, JD Gitlin. The copper chaperone for superoxide dismutase. J Biol Chem 272:23469-23472, 1997.

53. E Himelblau, H Mira, SJ Lin, VC Culotta, L Penarrubia, RM Amasino. Identification of a functional homolog of the yeast copper homeostasis gene ATX I from Arabidopsis. Plant Physiol 117:1227-1234, 1998.

54. T Hirayama, JJ Kieber, N Hirayama, M Kogan, P Guzman, S Nourizadeh, JM Alonso, WP Dailey, A Dancis, JR Ecker. RESPONSIVE-TO-ANTAGO-NIST1, a Menkes/Wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis. Cell 97:383-393, 1999.

55. J Valentine, E Gralla. Delivering copper inside yeast and human cells. Science 278:817-818, 1997.

56. F Goto, T Yoshihara, N Shigemoto, S Toki, F Takaiwa. Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 17:282-286, 1997.

57. MW Persans, X Yan, JM Patnoe, U Krämer, DE Salt. Molecular dissection of the role of histidine in nickel hyperaccumulation in Thlaspi goesingense. Plant Physiol 121:1117-1126, 1999.

58. U Krämer, RD Smith, WW Wenzel, I Raskin, DE Salt. The role of metal transport and tolerance in nickel hyperaccumulation by Thlaspi goesingense Halacsy. Plant Physiol 115:1641-1650, 1997.

59. SC Miyasaka, JG Buta, RK Howell, CD Foy. Mechanism of aluminum tolerance in snapbeans: root exudation of citric acid. Plant Physiol 96:737-743, 1991.

60. E Delhaize, S Craig, CD Beaton, RJ Bennet, VC Jagadish, PJ Randall. Aluminum tolerance in wheat (Triticum aestivum L.). I. Uptake and distribution of aluminum in root apices. Plant Physiol 103:685-693, 1993.

61. E Delhaize, PR Ryan, PJ Randall. Aluminum tolerance in wheat (Triticum aestivum L.). II. Aluminum-stimulated excretion of malic acid from root apices. Plant Physiol 103:685-693, 1993.

62. JM de la Fuente, V Ramirez-Rodriguez, JL Cabrera-Ponce, L Herrera-Estrella. Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science 276:1566-1568, 1997.

63. UW Stephan, G Scholz. Nicotianamine: mediator of transport of iron and heavy metals in the phloem? Physiol Plant 88:522-527, 1993.

64. HQ Ling, G Koch, H Bäumlein, MW Ganal. Map-based cloning of chloro-nerva, a gene involved in iron uptake of higher plants encoding nicotianamine synthase. Proc Natl Acad Sci USA 96:7098-7103, 1999.

65. K Higuchi, K Suzuki, H Nakanishi, H Yamaguchi, NK Nishizawa, S Mori. Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol 119:471-480, 1999.

66. DF Ortiz, L Kreppel, DM Speiser, G Scheel, G McDonald, DW Ow. Heavy metal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter. EMBO J 11:3491-3499, 1992.

67. DF Ortiz, T Ruscitti, KF McCue, DW Ow. Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. J Biol Chem 270:4721-4728, 1995.

68. PA Rea, ZS Li, YP Lu, YM Drozdowicz, E Martinoia. From vacuolar GS-X pumps to multispecific ABC transporters. Annu Rev Plant Physiol Plant Mol Biol 49:727-760, 1998.

69. MS Szczypka, JA Wemmie, WS Moye-Rowley, DJ Thiele. A yeast metal resistance protein similar to human cystic fibrosis transmembrane conductance regulator (CFTR) and multidrug resistance-associated protein. J Biol Chem 269:22853-22857, 1994.

70. ZS Li, YP Lu, RG Zhen, M Szczypka, DJ Thiele, PA Rea. A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCFl-cat-alyzed transport of bis(glutathionato)cadmium. Proc Natl Acad Sci USA 94: 42-47, 1997.

71. M Ghosh, J Shen, BP Rosen. Pathways of As(III) detoxification in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 96:5001-5006, 1999.

72. DH Nies. The cobalt, zinc, and cadmium efflux system CzcABC from Al-

caligenes eutrophus functions as a cation-proton antiporter in Escherichia coli. J Bacteriol 177:2707-2712, 1995.

73. IT Paulsen, MH Saier Jr. A novel family of ubiquitous heavy metal ion transport proteins. J Membr Biol 156:99-103, 1997.

74. BJ van der Zaal, LW Neuteboom, JE Pinas, AN Chardonnens, H Schat, JA Verkleij, PJ Hooykaas. Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol 119:1047-1056, 1999.

75. DS Conklin, JA McMaster, MR Culbertson, C Kung. COT1, a gene involved in cobalt accumulation in Saccharomyces cerevisiae. Mol Cell Biol 12:36783688, 1992.

76. A Kamizono, M Nishizawa, Y Teranishi, K Murata, A Kimura. Identification of a gene conferring resistance to zinc and cadmium ions in the yeast Saccharomyces cerevisiae. Mol Gen Genet 219:161-167, 1989.

77. L Li, J Kaplan. Defects in the yeast high affinity iron transport system result in increased metal sensitivity because of the increased expression of transporters with a broad transition metal specificity. J Biol Chem 273:2218122187, 1998.

78. RD Palmiter, SD Findley. Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc. EMBO J 14:639-649,

Was this article helpful?

0 0
Detox Diet Basics

Detox Diet Basics

Our internal organs, the colon, liver and intestines, help our bodies eliminate toxic and harmful  matter from our bloodstreams and tissues. Often, our systems become overloaded with waste. The very air we breathe, and all of its pollutants, build up in our bodies. Today’s over processed foods and environmental pollutants can easily overwhelm our delicate systems and cause toxic matter to build up in our bodies.

Get My Free Ebook


Post a comment